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1 Introduction 

1.1 Systems-level approach to Information Assurance (IA) 
Computer networks sometimes show a remarkable resilience that belies the 

opportunistic way in which they are usually assembled.  What is it about the structure of 
these networks and broader cyber systems that sometimes gives rise to resilient 
responses, and how can we build and manage them to make them even stronger?  As 
ecologists, we have been drawn to study cyber systems because of the promise of finding 
the emergent properties, attributes that make the cyber system as a whole greater than the 
sum of its individual parts.  While many other researchers have examined and developed 
specific technologies to counter cyber attack, the Cyber Ecology project has attempted to 
describe the underlying structure of cyber networks as dynamical systems, or cyber 
ecosystems, in terms of computers, users and the work they perform.  We have worked to 
map the ecological paradigm to the cyber realm and have ported technologies that 
contribute to the rapid assessment of the contributions of system structure to resilience 
and tolerance in the face of attack.  This report contains the models and tools to share this 
view of computer networks and cyber systems through the eyes of ecologists.  Using the 
methodologies presented here, we assess the dynamical behavior of these systems and 
predict how they will respond when attacked. 

The systems-level approach to information assurance has been proposed by others 
as well.  In a position paper, Neumann (1998) aptly summarized the importance of the 
systems-level perspective for survivability: 
 

“Survivability of systems and networks is not an intrinsic low-level 
property of subsystems in the small.  Instead it is an emergent property of 
entire enterprises in the large.  Simply composing a system or network out 
[of] its components provides no certainty whatever that the resulting 
whole will work as desired, even if the components themselves seem to 
behave properly.  One of the most important challenges confronting us is 
to be able to derive the resulting properties of a system in the large from 
the properties of its components and from the manner in which they are 
integrated.” 

 
The ‘big-board’ view of information assurance (IA) is an elusive goal.  There is a 

tendency to focus on what we can measure to achieve a very precise though limited view 
of highly constrained, small systems, rather than addressing the more difficult-to-measure 
and nebulous attributes of large systems.  As we increase the scale of analysis, new 
results emerge that pertain to the increased scale of aggregation.  As the units of analysis 
change, corresponding to new levels of aggregation, the local effects that existed at more 
constrained analyses become hidden from view. 

There are substantial benefits that justify such analyses and make them a valuable 
complement to local descriptions and experiments.  The top-down, system-level view of 
networks provides a complementary perspective to the bottom-up mechanistic approach 
to structure.  From the top-down, systems-level view, the aggregate structure of the 
network, along with its strengths and vulnerabilities, are revealed.   
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Examining a system from a high level of aggregation increases the size of the 
field of observation.  This wide focus allows the capture of the direct and indirect effects 
of both attack and control measures on large systems.  Understanding these effects in 
their totality permits selection of the most effective action over the widest possible 
solution space.  This is important to ensure that control activities do not inadvertently 
exacerbate problematic system behaviors. 

As systems grow in size and complexity, it becomes difficult to precisely control 
the interactions among system elements.  Because management is at best distributed and 
at worst nonexistent, situations are likely to arise in which response to a challenge is 
diffuse or delayed.  In computer networks, this challenge might be a distributed denial of 
service or other attack.  Our goal is to explore the ways in which the natural tendencies of 
the system can be harnessed to encourage resistance to the attack and recovery to pre-
attack status. 

To achieve this high-level systems view of computer networks, we assume a 
structural approach to modeling complex systems.  This provides us with more general 
models than can be derived from a stochastic approach because we assume that causal 
relationships exist based on expert knowledge rather than requiring additional evidence to 
infer their existence.  (Of course, one component of expert knowledge is the formulation 
of opinions based on a deep understanding of such evidence).  The resulting models 
cannot tell us where in the network a vulnerability lies, but can identify the entities 
involved. 

The high-level view is important.  In terms of information warfare, Alberts et al. 
(1999) noted that “[S]hared battlespace awareness emerges when all relevant elements of 
the warfighting ecosystem are provided with access to the COP [Common Operating 
Picture].  This means that battlespace awareness must be viewed as a collective property.  
It does not exist at just one place (node) in the battlespace, but rather at all relevant nodes 
in the battlespace – across echelons and functional components.” 

We have examined computer networks and cyber systems as ecologists and found 
many parallels with complex systems in the natural world.  We have applied ecological 
and epidemiological modeling tools to discover emergent attributes that were previously 
hidden and have attempted to interpret these findings in an applicable and useful way. 
The work undertaken in this project progressed hierarchically, from the mapping of 
individuals, disease transmission among individuals, and community transmission of 
disease to analogous cyber phenomena.  This report follows this chronological order in 
the presentation of results.  It is also possible to read this report from a more applied 
point-of-view using the following guidelines. 

The systems-level view of the network is formed by nodes and their 
interrelationships.  The nodes may consist of collections of individuals (machines, 
detectors, or attackers) or aggregate variables such as a governmental department or 
process.  The results of the analysis reveal whether or not the hierarchical structure of the 
network, as defined by the model, is stable, and identify points of input through which 
damage may be structurally maximized or minimized as the case may be.  In such a 
vulnerability, a node represents a corridor to other nodes in the system, either through 
direct or indirect effects. 
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1.2 Technical approach 
Our analysis indicates that there is no unique one-to-one correspondence between 

ecology and cyber ecology.  Ecology, a well-developed discipline with an established 
body of theory, provides a starting point from which to launch our investigations.  When 
applied to cyber ecology, ecological models suggest applications that bear further 
exploration.  Inferences based on ecology can be mapped to testable hypotheses for cyber 
ecology.   

The general approach for the Information Assurance Cyber ecology effort is shown 
in Figure 1.  We based our work on the mapping of definitions and theory from ecology 
to cyber ecology.  In the ecological domain, definitions allow for the development of 
theory.  We will attempt a parallel transition from cyber ecological definitions to theory 
at each level of analysis.  
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Figure 1.  Technical approach for cyber  ecology 

 
 

In Chapter 2 of this report, we discuss ecological definitions and map these 
definitions to cyber ecology.  We develop the experimental cyber ecological 
classification in Chapter 3.  We review the development of ecological classification from 
ecological definitions in Chapter 4.  We discuss the implications of ecological 
classification on cyber ecology in Chapter 5. 
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1.3 Communicating the high-level view 
The methodological approaches developed in this report provide system-level 

analyses of infection and attack and present the results of infections and attacks to the 
network at the level of the network for strategic decision-making.   

The synthetic view of large systems is not intuitive.  Mastery of the systems-level 
view of network behavior can allow analysts and decision-makers to assume more 
strategic leadership roles when network performance is compromised by attack.  These 
roles require an understanding of both the internal and external environments of the 
organization.  They require the ability to incorporate ambiguity and complexity, as well 
as extensive information processing (Hambrick 1989). 

Kotter (2001) has made the distinction that “management” is about coping with 
complexity.  Leadership, by contrast, is about coping with change.”  System and network 
administrators deal with complexity daily, maintaining, for example, smoothly 
functioning computer networks.  However, in times of crisis, they are also called upon to 
assume leadership roles to resurrect crashed systems and networks and lost data.  In the 
event of attack, it is the administrator who is called upon to initiate actions that will 
disinfect the network and prevent further incursion. 

Leadership itself has been described as an aggregate property of organizations.  
According to Jaques (1986) “leadership is not simply an idiosyncratic characteristic of 
some individuals.  It is a systemic property derived from the interaction of the 
requirements of critical organizational tasks, the critical functions those tasks serve, and 
the problem-solving characteristics of the actors in ‘leader’ roles.”  

1.4 Anticipated impact 
The approaches presented provide a framework in which to analyze system-level 

behavior of large networks and their response to attack.  Such a framework is necessary 
because of the complexity of these systems.  Response to perturbation can be diffuse and 
counterintuitive.  The visualization of these systems requires the computational support 
and the cultivation of a strategic mindset. 

Dreyfus (1982) discusses four intellectual capacities requisite for strategic thinking: 
component recognition, salience recognition, whole situation recognition, and decision.  
The first three capacities are exercised by the structural approach to ecosystem modeling.  
In order to construct the graphical model, the analyst must recognize that a variable 
represents an integral part of the system under consideration (component recognition) and 
that it merits inclusion in the model (salience recognition).  The graphical model in its 
entirety forms a synthetic, holistic representation of the system and analysis reveals 
system-level properties (whole situation recognition).  In addition, the results of the 
analysis inform strategic decision-making.  Dreyfus (1982) also describes five stages of 
competency:  novice, advanced beginner, competency, proficiency, and expert.  As 
analysts become proficient in the four intellectual capacities, they advance in proficiency 
level.  Quinn (1988) describes expert strategic leaders as master managers. 

To facilitate the analysis of the models formulated in this report, we have also 
developed a suite of simulation programs, the Cyber Ecology Toolkit, to accompany this 
report.  The simulation programs are written in PV Wave, a general simulation 
development environment.   Research has shown that simulation is a viable tool for 
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leadership training.  Streufert (Streufert 1986, Streufert et al. 1988) for example, 
described simulation-based training that produces significant increases in simulation-
measured skills. 

The Cyber Ecology Toolkit provides an opportunity for ‘guided discovery’ or 
mentorship in systems-level thinking and management.  Future cyber terrorist attacks will 
be “very insidious, well-planned, highly rehearsed, and well-coordinated. . . . look for 
highly planned, well-researched attacks on critical pieces of information infrastructure 
rather than something that indiscriminately targets a wide variety of sources, for instance, 
a widespread denial of service attack.” (Barish 2001).  The effective control of such 
attacks will require not only the competent installation and maintenance of basic security 
features such as intrusion detectors, but also a more holistic, system-level perspective of 
the network as a whole.   A system-level outlook has promise to provide system-
administrators the capabilities to: 
 

• Minimize collateral damage due to attack 
• Enumerate indirect effects of attack 
• Predict effects of attack 
• Plan resource allocation in response to attack 
• Elucidate consequences of management decisions in response to attack 
• Elucidate the actual structure of cyber systems from their observed responses to 

attacks. 

1.4.1 Anticipating ‘surprise’ 
One issue that ecologists have addressed at length is to understand the effects of 

surprise on the dynamics of complex systems.  Surprise may take the form of intellectual 
advancements that could not be anticipated with prior technology.  It may also take the 
form of an inadequate response or malfunction of the system.  In this work, we address 
the element of surprise in cyber systems in the form of attacks and apply techniques 
drawn from ecosystem analysis to describe and formulate hypotheses about the effects of 
these attacks. 

Ecologists recognize five strategies for preparing for surprise (Levins 1995): 
• Prediction 
• Detection and Response 
• Tolerance (Reduced Vulnerability) 
• Prevention 
• Mixed Strategies 

We discuss each strategy briefly and indicate the section of the report in which the 
strategy is discussed in greater detail. 

Predicting the unexpected is a contradiction in terms.  The only way we can 
predict the unexpected is to pretend that the unknown is like the known.  This biases the 
scope of our predictions and requires that they conform to our current understanding of 
the world.  JBS Haldane observed, “The world is not only stranger than we imagine, but 
stranger than we can imagine.”  One way that we have addressed this dichotomy is by 
generating very general templates of attacks.  For example, the general confidentiality, 
integrity, and availability attacks presented fit a wide range of attacks and are not 
constrained to any one agent in particular.  The predictions presented in this report show 
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the hypothesized response of the cyber system as it returns to its previous homeorhetic 
state, that is, the resting state of the system prior to attack.   

Predictions about the response to attack also play a major role in detection and 
response, as well as in tolerance and prevention.  Hypotheses about the effects of an 
attack may show that certain parts of the cyber system, or network, may be more 
sensitive than others to the attack.  These variables make good candidates for monitoring, 
because these variables are transparent to effects of the attack.  The progress of an attack 
can be monitored by observing these variables. 

Tolerance can also be hypothesized from the predictions about response to attack.  
A tolerant system will resist an attack and continue to function despite the damage 
rendered by the attack.  Tolerant systems can be characterized by the lack of response to 
attack.  Hypotheses about tolerance follow directly from the predictions. 

Prevention occurs when predictions are proactively applied to the design and 
management of cyber systems.  An ecological analysis of the dynamical behavior of a 
system prior to implementation can illustrate any weaknesses or undesirable interactions 
among variables prior to undertaking the expense and effort of building the system. 

Mixed strategies involve the application of two or more of these primary 
strategies in concert.  For example, different behaviors may be desirable in systems that 
are under attack and in those that are not.  A mixed strategy might be a policy that 
specifies changes that should be implemented when an attack is detected in order to 
increase tolerance. Taken together, these strategies provide tools for the adaptive 
management of complex cyber systems.  Adaptive environmental management of natural 
systems was developed in the late 1970s by Holling.  He realized that “laboratory and 
controlled field experiments on parts of ecological systems could not be aggregated into 
an understanding of a whole.”  Adaptive management integrates science and management 
in a very practical way.  Using Holling’s insight, we treat the management of complex, 
changing cyber systems as experiments to be monitored and adapted. 

1.4.2 Looking to the future 
We have already discussed the limits of prediction and how the unknown must be 

described as if it were known in order to conform to our knowledge about how the world 
works.  To gain clues about future trends, however, it is instructional to look to the 
fringes of current practice.  What will cyber systems of the future look like? 

From an ecological perspective, we are concerned with the number of species that 
will likely be present and the manner in which they interact.  Each interaction forms a 
portal through which an attacker can invade a system.  It is commonly believed that 
opportunities for infiltration will only increase as more devices and applications are 
drawn into the transaction stream.  For example, in a recent article about the global 
beverage market, Stevenson (2002) described a transaction at a Japanese vending 
machine: 
 

As we watch…, a uniformed schoolgirl approaches with her DoCoMo 
phone at the ready.  First she presses some buttons on the phone – and 
waits about 10 seconds.  Then she holds the phone up to the scanner on the 
machine and waits again, for her purchase to go through.  And then finally 
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the machine tumbles out her selection: Water Salad, a vitamin-enhanced 
meal in a can that Coke targets to Japanese women. 
 
The whole routine is awkward and slightly ridiculous.  If she had taken a 
100 yen coin from her pocket, she would have saved at least 45 seconds: 
Yet this is what it takes now to sell drinks to a Japanese teenager, perhaps 
the most demanding breed of consumer who ever lived. 

 
A diverse cyber and communications community is required to support 

this one simple sale at several levels of aggregation.  For the sale itself, the 
communications network must interact with the vending machine to perform a 
financial transaction.  When we consider the manner in which the vending 
machine is stocked, the community increases in size to include a warehouse, 
delivery routes, and service people who perform the actual work of placing the 
product into the machine.  Each entity involved in this transaction is a variable in 
the ecosystem and the way in which they interact determines the strengths and 
vulnerabilities of the system to stress and attack.  Each interaction is a potential 
avenue for insertion of hostile malware. 

 
It is true that technological advances beyond DoCoMo’s i-mode are struggling in 

Japan’s current communications technology market.  The telecommunications 
architecture of the future may be much different that we can now imagine.  However, we 
can expect that it will be complicated and that it will reach and interconnect markets that 
will in turn affect how we will live our lives.  We assume the perspective that planning 
for attacks of the future requires more than a narrow focus on particular technologies.  
We must plan for broad, highly connected cyber ecosystems with complicated interaction 
patterns.  The community concept of cyber systems is discussed in Chapter 5, and 
examples of cyber communities.   

Ecological modeling, like most types of modeling, is an art as well as a skill.  We 
present examples and explanations throughout this report to explain the assumptions 
underlying the model and the methods used to construct them.  The models range in 
scope from very broad models at high levels of aggregation that include entire 
government agencies in a single variable (Propheteer Strawman), to more constrained 
models of process (logistics system scenario) and infectious spread (Loveletter.vbs). 

A major part of the work presented concerns the mapping of ecological concepts 
to the cyber realm.  Entities such as consumers and producers of resources and services 
are common to both systems, controlling the manner in which energy cascades through 
the respective systems.  Categories such as predator and prey, parasite and parasitoid also 
have meaning and are discussed in Chapter 3. 

We have also included epidemiological models in our work.  Epidemiological 
models represent simplified ecological models that contain disease, hosts, and perhaps 
vectors.  They are different from the ecological models presented here because they rely 
on a stochastic description of the community and produce a quantitative estimate of the 
force of disease.  These models are discussed in Chapter 4 of this report. 
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1.5 Summary 
We have approached the issue of cyber defense from a large-systems point of 

view.  Using ecosystem models, we have developed methodologies to assess the effects 
of the attacks on cyber ecosystems. 

This expansive approach addresses the scale of potential damage possible as a 
result of such an attack.  While an attack may initially begin with penetration of a specific 
point in a network, the ramifications are vast, and may extend beyond the boundaries of 
the network-proper. 

The United States has substantial information-based resources, including complex 
management systems and infrastructures involving control of electric power, money flow, 
air traffic, oil and gas, and other information-dependent items.  U.S. allies and potential 
coalition partners are similarly increasingly dependent on various information 
infrastructures.  Conceptually, if and when potential adversaries attempt to damage these 
systems using IW techniques, information warfare inevitably takes on a strategic aspect. 
(Molander et al. 1996). 

Large-scale models are the domain of ecological models.  By modeling 
information-based services and resources as elements of cyber ecosystems, we can 
predict the effects of attack on a larger scale, in terms of effects on the many components 
that form the system, than would be possible with more focused methodologies.   

Future investigations might include large-scale simulations to test the speed with 
which the models can be generated and their accuracy (e.g., level of agreement of 
prediction with observed results).  Using simulation experiments, we can test whether or 
not the models can locate weak points in a large-scale network, which are points where 
minimal input may potentially produce maximal damage).  We can also test whether 
modifications guided by the analysis produce network configurations that are better able 
to defend critical cyber assets.  The model building techniques presented in this report are 
just a beginning.  Larger-scale, more detailed high-level scenarios will help us develop 
practical guidelines for analysts. 
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2 Cyber Ecology  

2.1 Introduction 
In this chapter, we present a rationale for the application of ecological concepts to 

the cyber realm and demonstrate how the results of such analysis may contribute to the 
description, explanation, and mitigation of damage due to cyber attack.  

Cyber ecology is the study of the structure and behavior of computer networks. 
The term cyber ecology is derived from ecology, the scientific study of interrelationships 
among organisms and their environments.  Cyber ecology is a systems-level discipline 
addressing interrelationships among network constituents and the responses of networks 
to perturbations, such as attacks.  It is a cross-disciplinary synthesis incorporating 
elements of biology, epidemiology, ecology, computer science, and systems engineering. 

The application of biological concepts to computer networks has been suggested 
previously, notably by the National Research Council (1999) in their report, Trust in 
Cyberspace: 

 
“Metaphors and observations about the nature of our natural world 
– flocking birds, immunological systems, and crystalline structures 
in physics – might provide ideas for methods to manage networks 
of computers and the information they contain.  The design 
approaches outlined above – population diversity and monitor-
detect-respond – have clear analogies with biological concepts.” 
   
Ecologists study the dynamic behavior of complex natural systems and have 

developed techniques to study the resources and populations that form ecological 
communities, as well as tools to evaluate and predict the behavior of a community as a 
whole.  While biological analogies have proven to be useful and intuitive in the 
description of isolated cyber phenomena, they have been applied only in an opportunistic 
manner.  Cyber ecology is the coherent translation of biological concepts, primarily 
ecological, to cyber systems (see Figure 2).   
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Figure 2.  Cyber ecology is the coherent and consistent translation of a body of biological 
concepts 

2.2 Role of cyber ecology in information assurance 
 The biological sciences are highly differentiated.   Among the disciplines 
concerned with human health, such as medicine, public health and human ecology, there 
are shared areas of concern, although the sciences remain distinct.  Medicine deals with 
the health of the individual.  An underlying philosophy, primum non nocere, “first do no 
harm,” illustrates the primacy of the individual.  In contrast, and sometimes in short-term 
opposition, public health deals with the health of the population.  Public health 
practitioners may view risk to individuals as acceptable, provided there is sufficient 
benefit to the population-at-large.  For example, vaccination programs lower risks to the 
population, although a few individuals may die from adverse reactions.  An ideal strategy 
for an individual would be to remain unvaccinated in a completely vaccinated population, 
thus deriving all the benefits and bearing no risk.  The individual’s primacy is 
superseded, from the standpoint of public health, by the benefits of a large proportion of 
vaccinated individuals in a population.  Ecologists, in turn, are concerned not only about 
the environment in which individuals live, but also with the constitution of various 
populations.  For an ecologist, it is important to understand the interactions among 
disease organisms, the individuals and populations they infect, and the environment in 
order to control disease.  Even though they are distinct, medicine, public health, and 
ecology share one common goal: the reduction of morbidity (occurrence of disease) and 
mortality (death). 
 Parallels between the human disease control and information assurance models 
already exist.  In the network sector, analogous to public health in the human disease 
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control model, computer epidemiology has been pioneered by Murray (1988) and 
Kephart, Chess, and White (1991, 1993).  Parallel to the medical sector in the human 
disease control model, disease transmission paradigms for infectious agents in 
information assurance have also been suggested (Adleman 1990).  IA practitioners who 
seek to protect individual machines through measures such as immunological response 
and other defensive mechanisms, function somewhat as medical practitioners in the 
biological model.  Network administrators and IA practitioners may also intervene at a 
level equivalent to the level of public health practitioners in the human disease control 
model.  They are concerned with the functioning of their networks, and may accept the 
loss of individuals to maintain network integrity. Cyber ecology similarly describes a 
specific region of information assurance (IA).  Cyber ecologists are concerned with 
network structure and its response as a whole to perturbations such as cyber attack.  All 
IA-related disciplines share the common goal of mitigation of damage and minimization 
of loss (Figure 3). 

 
Figure 3.  Parallel domains and goals of ecology and cyber ecology 

 
Ecosystems exhibit behaviors common to all complex systems.  IA seeks to 

understand certain behaviors that have been studied extensively by ecologists, such as: 
• Where should an attack be targeted for maximal effect?  (Ecologists in integrated pest 
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affecting other species and the environment.) 

• What is the most likely attack?  (Ecologists study the manner in which environmental 
and population changes create favorable conditions for certain pests and diseases.) 

• What are optimal counter-measures?  (Optimal counter-measures will attack root 
causes, not symptoms.  Ecologists seek to understand the underlying mechanisms of 
complex system behavior manifested in the natural world.) 
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• How can networks adapt to retain functionality?  (Ecosystems are constantly under 
attack.  Ecologists investigate the reasons why some continue to function well.) 

• How can a network gracefully degrade? (As ecosystems progress systematically 
through stages of succession, functionality is modified.  Ecologists have explored the 
manner in which succession can be controlled, such as in agriculture.) 

• What redundancies contribute to robust behavior?  (Ecological models can 
systematically assess the contributions of redundancy, or diversity, through 
feedback.) 

• How can we build resilient networks? (Ecologists have studied the manner in which 
ecosystems recover or fail to recover following disturbance.) 

2.3 Life and its analogs 
A very basic concern in the application of a biological science to a nonbiological 

domain is whether or not the two domains demonstrate sufficient parallel structure to 
support the transfer of ideas and concepts.   Biological life possesses three very basic 
attributes: hierarchical organization, the ability to self-reproduce, and the ability to 
change.  Organisms exchange materials and energy from the surrounding environment 
and transform energy in order to maintain disequilibrium with the physical forces of the 
local environment (e.g., gravity, heat flow, diffusion) to maintain structural integrity 
(Ricklefs 1990).  Organisms possess a capacity for self-regulation and control, which 
promotes the maintenance of equilibrium.  Biological communities (ecosystems) provide 
a backdrop of stability that allows organisms to persist and evolve through natural 
selection. 

In contrast to previous descriptions of life expressed in terms of functionality,  
Maturana and Varela (1980) defined the living system as a structural and organizational 
unity.  According to Marutana (1975), “… autopoietic systems operate as homeostatic 
systems that have their own organization as the critical fundamental variable that they 
actively maintain constant.”  Self-production of key organizational components is central 
to this concept. 

Varela (1979) defined an autopoietic system formally as: 
 
“a network of processes of production (transformation and destruction) of 
components that produces components that: 

1. through their interactions continuously regenerate and realize the network 
of processes (relations) that produced them; and 

2. constitute it (the machine) as a concrete unity in the space in which they 
exist by specifying the topological domain of its realization as such a 
network.” 

 
The focus of autopoietic theory is cognition.  It has not been widely accepted by 
ecologists, but has proven useful in models of artificial life. 

Gaitlin (1972) defined life operationally as an “information processing system – a 
structural hierarchy of functioning units – that has acquired through evolution the ability 
to store and process the information necessary for its own accurate reproduction.”  He 
concurred with Shannon’s (1949) suggestion that information is a capacity for storage 
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and transmission and that it is equivalent to the entropy of a system.  The concept of 
information in ecology is discussed further in Section 2.10. 
 Farmer (in Febrache 1992) developed more detailed, criteria for artificial life, 
which correspond closely to the criteria for biological life:   
• Life is a pattern in space-time 
• Self-reproduction 
• Information storage of a self-representation 
• A metabolism 
• Functional interactions with the environment 
• Interdependence of parts 
• Stability under perturbations 
• Ability to evolve 
• Growth or expansion  

Ferbrache explained the life-like qualities of computer viruses using Farmer’s 
criteria.  They exhibit structural integrity and hierarchical organization and possess the 
capacity to self-reproduce and to evolve. They also exhibit self-regulatory properties that 
promote equilibrium states✝ .  He demonstrated that computer viruses do indeed possess 
attributes that parallel those of living organisms.  These parallel features of natural and 
artificial life support the application of biological models to computer networks. 

2.4 Evolutionary computation 
Living organisms possess the capacity to evolve.  Evolutionary algorithms 

(genetic algorithms, evolutionary programming, evolutionary strategies, classifier 
systems, and genetic programming) have harnessed the biological analogy to create and 
maintain populations of structures that evolve using search operators (such as mutation 
and recombination) and rules of selection.  Evolutionary algorithms comprise a set of 
heuristics that are valuable for solving problems whose solution has not been found using 
any other method. 

Evolutionary defenses have been suggested as defensive strategies against 
computer attack (see Cohen 1993).  Evolutionary defenses that provide unique defenses 
for each of many computers make attacks difficult by requiring a separate attack for each 
computer protected by such a unique defense (“security through obscurity”).  Attackers 
would be reduced to case-by-case attacks. 

It might be tempting to consider strategies such as “directed evolution,” where 
evolution could be guided to the acquisition of known, desirable traits.  This is not the 
nature of Darwinian evolution.  In nature, evolution is a random process driven by natural 
selection.  In evolutionary algorithms, it is a simulation driven by stochastic process.  
These are fundamentally dissimilar processes.   

Evolutionary ideas have been applied in other areas as well.  In describing the 
impact of the New Darwinism in economics, US Treasury Secretary Lawrence Summers 
(2000) succinctly summarized the impact of evolution on public policy: 

                                                 
✝  According to Febrache: “Stability under perturbation is a significant question which is closely related to 
the ability to adapt to environmental changes.  A virus can modify its execution paths within tightly defined 
logical parameters to compensate for limited environmental changes.” (Ferbrache, 1992) 
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“What evolution teaches you is that improvements in innovation come in 
many forms.  That evolution is an invisible-hand process rather than a 
guiding-hand process.  So it inclines one toward a set of public policies 
that support a very dynamic and competitive economy with a lot of 
different people trying to do a lot of different things, rather than an 
approach of trying to have people in an office figuring out what’s right 
and laying out a blueprint for the future.”   

 
This also may be the future of our information economy, the tension between IA 

design and adaptation strategies changing and evolving in concert with political will and 
public policy. 

2.5 A brief history of ecology 
A terse history of ecology follows.  Our purpose is to highlight the emergence of 

three methodological approaches: thermodynamic, cybernetic and evolutionary. 
Ecology began as a descriptive science.  The first ecologists were natural 

historians.  These early naturalists in the 18th and 19th centuries were concerned with the 
balance of nature, believing it to be God’s plan.  Charles Darwin (1859) shattered these 
beliefs with the publication of his theories in On the Origin of Species.  Darwin’s theory 
states that complex interactions among species play an integral role in the formation and 
maintenance of this balance. 
 Many early ecologists assumed a strictly biological interpretation of natural 
communities.  Early American ecology was strongly influenced by F. E. Clements (1916) 
and the Clementsian school of organismic ecology.  In this early systems-level 
conceptualization, communities of organisms were defined as super-organisms.  Elton 
(1927) pioneered the concepts of trophic levels (i.e., feeding levels, such as producers, 
herbivores and predators) and food webs, tracking the unidirectional flow of energy 
through the community. 
 Clements (1936) and H.C. Cowles (1899) developed the principle of ecological 
succession, which documented that communities change over time in a cyclic manner.   
New species colonize disturbed habitat, initiating the process.  These species may modify 
the environment, allowing later species to establish themselves, or conversely, to prevent 
new species from entering the system through competition. 

Incorporation of the environment into the community is relatively recent.  A.G. 
Tansley (1935) coined the term “ecosystem” to capture both the biotic (living) and 
abiotic (non-living) elements of the community.  Raymond Lindeman (1942) built upon 
this construct by distinguishing between the one-way flow of energy and cycling of 
chemical substances in the ecosystem.  E.P. Odum (1953) continued this work by 
developing complex models of energy flow through ecosystems. 

The thermodynamic approach to ecology was contributed by A.J. Lotka in 1925.  
His models demonstrated that transformations of mass and energy in ecosystems 
conformed to thermodynamic laws and described ecosystems mathematically in terms of 
the interactions among constituents of the community.   

Systems ecologists continue to describe complex ecosystems using mathematical 
models.  The cybernetic approach to ecosystem analysis emphasizes the roles of feedback 
and control in determining the relative abundances of the constituents of the community.  
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The study of ecosystems as complex, dynamic processes lends unique insights into many 
apparently paradoxical system responses.  In his classic investigation of the role of 
predators in determining the overall structure of a community, Paine (1966) demonstrated 
that certain predators, termed “keystone”, are necessary components of ecosystems with 
two or more competing prey species.  These keystone predators stabilize the system by 
preying on both competing prey species, allowing them to coexist within the limited 
resources of the system.  Removal of a keystone predator causes the community to 
collapse as competing prey species drive each other to extinction.  Paine’s work also 
marked the beginning of experimental community ecology. 

Modern ecology has been formed through the incorporation of two new concepts: 
equilibrium and evolution.  Communities may remain structurally unchanged over time 
although energy and nutrients pass through them and organisms die and are replaced.  
They are resistant to perturbation and return to equilibrium following such a disturbance.   

Evolution, at its most basic level, refers to change through time.  Biologically, it 
refers to the process of speciation, the change that species, or reproductively distinct 
groups, undergo through time.  Darwinian evolution arises from mutations, namely 
random changes in the highly conservative genetic code.  An individual with a mutation 
will have a higher, lower or equal fitness to other members of the population.  If a 
mutation confers higher fitness, it will be “naturally selected” and eventually become 
dominant.  It is important to realize that any selection, natural or otherwise, requires a 
stable equilibrium against which the fitness of traits can be compared.  When natural 
selection occurs, equilibrium provides a necessary backdrop against which evolution may 
occur. 

Ecology has progressed through the stages of natural history (what organisms are 
present?), population ecology (how do the organisms interact?) and community ecology 
(what is the system-level response to change?).  Given this progression, cyber ecology is 
currently in the early natural history stage.  The ad hoc classification of attack agents 
using biological analogy, such as viruses and worms, resembles the work of early 
ecologists describing the life history of organisms.  Our goal has been to develop cyber 
ecology through its subsequent stages, exploring the complex, dynamic nature of 
computer users and attackers within the structure of computer networks. 

2.6 How do ecologists build models? 
A scientist’s perspectives of the natural world are determined by the problems 

studied.  In some disciplines, it may be appropriate to focus on molecular structures, 
while in others a more macroscopic view may be necessary.  In his classic paper, Levins 
(1966) described the process of model building in ecology as managing tradeoffs among 
generality, realism and precision.  He listed three model-building strategies: 

(1) sacrifice generality for realism and precision. 
These models yield precise predictions for tightly constrained situations.  This 

approach has been adopted by natural resource managers to formulate precise, 
testable predictions based on the short-term behavior of organisms. 
(2) sacrifice realism for generality and precision. 

Popular among physicists who enter ecology, this approach yields very 
general models that generate very precise predictions.  However, the equations are 
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unrealistic given the conditions in the natural world.  Small departures from initial 
assumptions often have large effects upon predicted outcome.  
(3) sacrifice precision for generality and realism. 

Using qualitative (monotonic) data, realistic and generalizable predictions of 
system behavior can be hypothesized and tested.  This approach is valuable for 
hypothesis generation.  It is the most practical approach of the three in that data 
may be collected quickly and inexpensively.   

 Data differ in the types of information they contain.  When we speak of precision, 
we usually refer to ratio data, those data in which the ratio between two quantities has 
meaning.  Interval and ordinal data also contain quantitative information, but at a coarser 
scale.  For interval data, distance (far or near) has meaning, but ratios have none.  For 
ordinal data, direction has meaning (higher or lower), but distance and ratio do not.  In 
each category of data, quality is an issue.  We would argue that ordinal data of high 
quality is more valuable than erroneous ratio data.  In Table 1, we describe types of data, 
their characteristics and the analyses to which specific types of data are applied. 
 

Table 1.  Data types and their uses 

Data Type Characteristics Analyses 
Nominal Classification by name Taxonomic 
Ordinal Order has meaning Nonparametric statistics 

Qualitative analysis 
Interval Distance has meaning Nonparametric statistics 
Ratio Ratios have meaning Parametric statistics 

Quantitative analyses 
 
Generalizability will be more important than precision in our initial hypotheses 

about system behavior.  Since trends will be more important than point estimates, ordinal 
data describing the direction of effect will be sufficient.  As our hypotheses become more 
refined, we will turn to more quantitatively dense data.  Until that time, we will be more 
interested in the efficacy of structural modification and input in describing changes in 
system response rather than in efficiency.  That is, we will focus on the general potential 
of changes in structure to influence system behavior, rather than on the magnitudes of 
specific changes in specific situations. 

2.7 What are the structural elements of ecological models? 
Our models will be based on the construct of the community, an association of 

interacting populations.  The community is formed by a rich hierarchy of processes that 
are carried out over different scales in space and time.  It is a dynamic entity formed by 
the continual flux of resources through the system and by the birth, death, and growth of 
individuals.  The populations forming a community are linked so that the ecological 
impact of a population  (its influence on predators, competitors and prey) extends 
throughout the system. 

Ecosystems are open systems, based on the ability of producers to transform 
energy taken from outside the system into a consumable form.  Producers take the energy 
from the sun and through the process of photosynthesis, convert this energy into food.  
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Ecosystem models contain variables.  These variables must be measurable and, of 
course, variable.  Often, they are species populations.  They may also be nutrients, such 
as nitrogen, if the levels of the nutrient vary.  The variables must be linked.  These links, 
not the variables, contain the fundamental structural information about the ecosystem.  
They represent gates or conduits through which energy exchange occurs. 

The interrelationships among variables in a community are described as dyads.  
From a qualitative point of view, variables have two possible direct effects upon each 
other: an increase in one variable may cause an increase (positive effect) in another, or it 
may cause a decrease (negative effect).  In a predator-prey relationship, the predator can 
cause the prey population to decrease while the prey population causes the predator 
population to decrease.  In a competitive relationship, each population can cause a 
decrease in the other. In a mutualistic relationship, each species can cause an increase in 
the other.  Interrelationships need not be reciprocal. The possible direct links between 
variables are described in Table 2.  (Variables that are not directly linked may still 
influence each other indirectly through feedback loops.)  Strong interrelationships among 
system components are not necessarily required for stability.  McCann et al.  (1998) have 
shown that weak interrelationships can be stabilizing. 

 
Table 2.  Possible interactions between species (from Stiling, 1996) 

Nature of Interaction Species 1 Species 2 
Mutualism + + 
Commensalism + 0 
Herbivory, Predator/prey +` - 
Parasitism - - 
Allelopathy - 0 
Competition - - 
 
 Ecosystem models need not be complex.  The simplest possible ecosystem model 
is shown in Figure 4.  It consists of a single self-regulated population connected to its 
environment by a double link.  It must both affect and be affected by the other 
populations and resources in the larger system.  Of course, it is possible to complicate the 
model.  After all, most life on earth derives its energy from the sun, and the simple model 
can be made complicated by tracing energy to this initial source.  However, this may not 
be practical or necessarily enlightening.  
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Figure 4.  Simplest possible ecosystem:  

A self-regulated variable linked to the outside world by a double link 

 
Density dependence and links to allochthonous (i.e., input from outside the 

system) input are represented as self-effects.  The presence of a strong regenerative effect 
in at least one variable, expressed as a negative self-effect, is a requirement for system 
stability.  Intuitively, this requirement states that in a stable system, the most basic 
variables, upon which all of the more complex interrelationships are formed, must be able 
to maintain themselves independently of the rest of the system. 

Communities can be represented mathematically by the community matrix.  Just 
as information describing interrelationships is contained in the links, information 
describing system behavior is contained in the characteristic polynomial of the 
community matrix.  The coefficients of the characteristic polynomial express the role of 
feedback in the system.  Feedback occurs in ecosystems as the effects of 
interrelationships cycle through the community. Systems can be loosely categorized 
according to level of feedback: 

• Ad hoc assemblage (no feedback) 
• Controlled interactions (humans exploit biological tendency; e.g., agriculture) 
• Evolving, self-regulatory, autonomous communities. 

Feedback is important to the ecosystem because is provides regulation and 
stability.  A stable system is a predictable one, and a predictable system can be managed.  
The solution to the characteristic polynomial, the eigenvalues, describe system recovery 
following perturbation. 

2.8 Structure in ecosystems 
Systems are portrayed as concrete assemblages of things, but actually are abstract 

constructs.  Systems are selectively envisioned to elucidate specific phenomena.  The 
challenge is to build informative models that incorporate sufficient complexity. 
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2.8.1 Overview 
Ecologists refine their analyses of communities by the use of different structural 

perspectives.  Food web analysis traces the flow of energy through a community by 
noting who eats whom.  Variables are usually species populations. 

Ecosystem analysis, in which species are placed in functional groups with other 
species of similar trophic position, is another way to visualize communities.  Ecosystem 
analyses tend to be coarser than food web analyses, but may capture more basic elements 
of community structure by reducing the number of variables in the ecosystem.  It is 
important to bear in mind, however, that differences in the underlying approach taken in 
formulating these models (e.g., thermodynamic or cybernetic) can drastically affect 
predictions generated by the model. 

Biologists and ecologists use parsimony to distinguish among models. Parsimony 
is the philosophical concept that states that of two or more explanations, the simplest 
should be accepted.  It is often referred to as “Occam’s razor,” from the medieval 
scholastic philosopher who formalized it.  In evolution, it is invoked in the science of 
systematics, which is the reconstruction of evolutionary paths.  When faced with two 
paths, for example, the shortest is more likely because mutations are extremely rare and 
successful ones even rarer.  It is therefore very unlikely that the longer path could have 
occurred. 

In cyber ecological models, food web analysis is analogous to tracking the flow of 
information thorough a computer network as machines communicate.  Information 
transfer from a server to client can be thought of as a trophic relationship.  Resources 
from the server (for example, information and bandwidth) are “consumed” by the client. 
Functional groups may consist of types of users (end-users, administrators) or operating 
systems (Mac, UNIX, PC).  Rather than including many distinct nodes in a network 
model, we can collapse the number of variables significantly by using functional 
groupings.  This exercise may or may not be informative depending on the underlying 
structure of the network. 

2.8.2 Hierarchy 
The modern view of hierarchy is that any system may be viewed simultaneously 

at a range of scales as a multilayered composite (Peters 1995).  This view is intuitive for 
biologists who are familiar with the concept of “levels of organization” (cell, organism, 
population, community).  In ecosystem analysis, this multilayer perspective applies as 
well.  For example, plant populations may be modeled at many levels, in terms of their 
nutrient value to primary consumers at one level and in terms of their chemical exchange 
processes at a finer level.   

Simon (1962, 1969, 1972) introduced the insight that organization results from 
differences in process rates.  Overton (1974) showed that the structure imposed by these 
differences was sufficient to decompose a system into organizational levels.  Systems 
may be modeled as vertical structures where behaviors associated with higher levels 
occur at slow rates while those associated with lower levels occur at rapid rates.  For 
example, the photosynthetic processes in the leaves of a tree occur at a more rapid rate 
relative to its growth.  The growth of a forest is a slower process at an higher level of 
organization.  In the vertical view of hierarchy, organizational levels are isolated from 
each other because they operate at distinctly different rates. 



  

21 
 

The differences in rates help explain how ecosystems respond to environmental 
fluctuations.  Each level in the hierarchy filters the signals it receives by attenuating those 
greater than its own characteristic frequency.  Each organizational level acts as a filter, 
confining high-frequency dynamics to lower organizational levels (Overton 1977).  
Lower organizational levels communicate an averaged, filtered response to higher levels. 

Ecosystems also may be decomposed horizontally into subsystems or holons 
(Koestler 1967, 1969) on the basis of differences among rates.  Within a holon, system 
components interact strongly with each other.  They interact weakly with components of 
other holons.  Holons are defined by an enclosing boundary or surface that encloses it and 
separates it from the rest of the system (T.F.H. Allen et al. 1984). 

The definition of an ecosystem is not arbitrary, but dependent upon the time and 
spatial scale of the problem being addressed.  The level of organization determines the 
breadth of observation.  For example, higher-level behaviors, such as the growth of a 
forest, may occur slowly and adequate lengths of time must be allocated to observe 
change.   When observing lower-level behaviors, these same higher level behaviors will 
appear as background constants. The scale of observation depends on the “window (i.e., 
the range of rates) through which one is viewing the natural world” (O’Neill et al. 1986).   

O’Neill et al.  (1986) noted that it is impossible to designate the components of 
the ecosystem.  A group of trees in a forest may appear: 
(1) as a dynamic entity in its own right; 
(2) as a constant (i.e., nondynamic) background within which an organism operates; or 
(3) as inconsequential noise in major geomorphological processes. 
Choice of the appropriate spatio-temporal scale is of paramount importance. 

It may be tempting to collect data about lower-level behaviors with the intention 
of picking out patterns of higher-level behaviors.  This is more often than not a costly 
exercise in futility.  The art of modeling is the choice of the appropriate window through 
which to observe a behavior of interest.  Massive amounts of data at too fine a scale will 
obscure the detection of long-term patterns.  However, the converse is also true.  Too few 
data about lower-level behaviors also will be non-informative. 

2.9 Reductionism and emergence 
 Ecosystems consist of many parts interacting in complex ways.  Simon (1962) 
noted that while it is possible to elucidate the behavior of the parts of a complex 
ecosystem, it is more difficult to understand the properties of the whole.  Reductionist 
examinations are easier than synthetic analyses of complex systems, but cannot, by 
definition, capture the emergent properties of the system.  “A reductive explanation of a 
behavior or a property of a system is one showing it to be mechanistically explicable in 
terms of the properties of and interactions among the parts of the system” (Wimsatt 
1997).  Emergent properties are dependent upon the mode of organization of the system’s 
parts.  That is, they involve the interorganizational interdependence of diverse parts. 
 Emergent systems not aggregates.  Aggregates demonstrate invariance to (1) 
rearrangement of parts; (2) addition or subtraction of parts; (3) decomposition and 
reaggregation of parts; and (4) cooperative or inhibitory interactions.  An assemblage is 
“merely” an aggregate when all conditions are met for all possible decompositions of the 
system into parts.  Emergence is the manifestation of new properties when a system is 
perturbed.  Sometimes a system may behave as an aggregate under one decomposition, 
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but display emergence on others.  “The common appearance of unqualified aggregativity 
is a chimera” (Wimsatt 1997).  The multiple perspectives assumed by ecologists tease 
apart these paradoxical decompositions to construct compositional models of complex 
systems. 

2.10 Information in ecology 
One quality of life is the ability to remain at disequilibrium with the immediate 

environment, so that individuals may maintain life-sustaining processes without 
succumbing to the powerful equalizing forces of the surrounding environment.  For 
example, organisms must sustain internal chemical processes such as the balance of 
electrolytic chemicals exclusively from chemical processes occurring in the external 
environment.  The primary producers harness the energy of the sun through 
photosynthesis and provide the basis for most of the food chain.  Consumption is a 
repeated process of transforming matter to energy to matter.  Information is associated 
with these state changes.  A balance results between the tendency toward a more uniform 
distribution of energy of lower quality (the level of energy in the immediate environment) 
with increasing complexity of traces left by decay of energy.  Ecosystems are a 
mechanism for organizing huge amounts of matter.  This mechanism is driven by energy 
transitions that occur as energy flows through and is captured by the system. 

The cybernetic organization of ecosystems arises from the concept of the 
ecosystem as a self-controlled entity depending on a network of information exchanges 
and negative feedback.  System properties are maintained by feedback resulting from 
energy-matter transfers and information exchange.  

Shannon (1949) defined information as a quantitative measure of communicative 
exchange, as the capacity to transmit information, or as Gaitlin (1972) has suggested 
“potential information.”  As Weaver (1949) noted, “. . . this word ‘information’ in 
communication theory relates not so much to what you do say, as to what you could say.”  
While most biologists have focused on mechanical descriptions of life, for example, in 
terms of genetic and chemical processes, some have also explored life in terms of 
information processing.   

The incorporation of information theory into ecology has been pursued 
extensively by Margalef (1968, 1995).  Many of the views that follow about ecology and 
information theory in this section are summarized from his work.  Margalef considers 
ecosystems and communication to be very similar.  Both ecosystems and language 
belong to a class of systems made of parts (subsystems) that are self-replicating by their 
own power (biological organisms) or by external agency (viruses, words).  The 
ecosystem acts as a channel in which the relationship of components, of each single 
individual to another, may be established. 

Margalef sees the ecosystem as information, whose maintenance and accretion 
involves cybernetic behavior.  “Any cybernetic system, through the interaction of its 
parts, restricts the immensely large number of a priori possible states and, in 
consequence, carries information”  (Margalef 1968).  In ecosystems, loss of energy 
quality is associated with increased information and entropy.  The largest increase in 
entropy occurs in primary producers, the site of a major ecological information exchange.  
Energy decay corresponds to increased information.   
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The accumulation of information in ecosystems, according to Margalef  (1968), is 
accomplished through succession.  Self-organizing systems pass through states in which 
some piece of the system is replaced by some other piece that allows the preservation of 
the same amount of information at lower cost.  In initial poorly organized stages of 
succession, where exploitative species colonize pristine landscapes, the relative energy 
flow is high as organisms receive the full impact of the environment and are selectively 
destroyed.  Information accretion is fed by the surplus production of new organisms 
representing the cost of accumulating information. 

Ulanowicz (1980, 1995, Hirata & Ulanowicz 1984) has used information theoretic 
concepts to quantify the growth and development of ecosystems.  His metric, ascendency, 
is based upon mutual information, the average amount of uncertainty resolved by 
knowledge of network structure.  Ascendency is an attribute of the ecosystem as a whole.  
As ecosystems “mature,” underlying transformations tend to contribute to higher network 
ascendency. 

2.10.1 Information storage (memory) 
Feedback loops formed by the interaction of species are a form of memory for 

ecosystems.  They are expensive to maintain and only contain a limited capacity for 
storage.  For example, the information content of contemporary forests, contained in their 
feedback loops, does not differ significantly from the information content of ancient 
forests.  Margalef (1968) suggests that ecological memory “seems always to have played 
the role of an auxiliary memory of rather limited capacity.” 

In cybernetic systems where information is expressed by the actions of 
mechanism, storing information means increasing the complexity of mechanism.  One 
reason for the success of life is in increasing complexity through miniaturization, 
“packing, in a small space, a prodigious number of overlapping mechanisms, wonderfully 
persistent by virtue of built in regulatory circuits and sufficiently open to carry into the 
future a promise of new developments” (Margalef 1968). 

Information can also be stored in persistent structures.  These structures may 
consist of large animals and trees with prodigious life spans.  Information is also stored 
by species that construct edifices and artifacts. 

2.10.2 Ecosystem as bridge 
Margalef (1995) considered the ecosystem to be a bridge of information.  “If 

energy provides a bridge over space, information assures a persistence, or marks an 
evolution, that is expressed along time.”  Information is transmitted, in Margalef’s view 
along three subchannels: genetic, ecological, and cultural.  The genetic subchannel 
contains information about replicable individual structures.  The ecological channel 
contains information about constituent species.  The cultural channel contains 
information that has been learned by individual activity or experience (Margelef 1968, 
1995). 

Throughout the development of life on earth, the cultural channel has been of 
negligible importance until only recently when it has been subject to explosive growth.  
In ancient times, the cultural channel was expressed through primitive signals such as the 
formation of trails that others could follow and accumulations of dead material.  It 
progressed to more complicated manifestations, such as the formation of local traditions. 
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It is now expressed on a large scale in our expansive manipulation of the environment 
(and associated untoward effects such as global warming), and on a very small scale in 
our manipulation of the bits and bytes that form our vast computational networks. 

2.11 Experimental community ecology 
Experimental ecology is a relatively recent development.  Analytical food web 

analysis began in the mid-1950s, sparked by the question of whether or not community 
diversity enhances stability.  MacArthur (1955) suggested that the more complex a 
community, the greater its stability, stimulating experimental work to address this issue.  
He reasoned that in systems where energy can take many paths, a disruption of one 
pathway, say the unavailability of one prey species, can result in the diversion of energy 
through another route, say an alternative prey species, maintaining the overall flow of 
energy through the system. 
 Ecological experiments have been criticized because of their inherent ambiguity 
(Peters 1991).  As we have previously discussed, many perspectives of the ecosystem are 
simultaneously possible, and models generated from these views may differ in their 
predictions.  The ways of describing structure, hierarchically as in food web analysis or 
grouped into functional groups, are often too flexible for those seeking precise numerical 
results.   We should keep in mind, however, that the goal of complex ecosystem analysis 
is to learn about structure.  Often, apparently contradictory results are very consistent 
when viewed from the perspective of the community as a whole. 
 The key to community structure lies in the links among variables, and 
experimental community ecology seeks to gain information about how variables are 
connected and how these connections affect system response.  Experimental community 
ecology is reductionist in that it teases apart the individual components of system 
behavior, yet it is synthetic in that this information must be recombined into a description 
of the system to predict system level response. 
 Community ecological experiments can be arranged according to the amount of 
knowledge required to perform them.  Broadly speaking, experiments in which 
ecosystems are manipulated are called pulses and presses.  In a pulse experiment, a 
variable is pushed from its current state, for example, the number of prey may be 
increased, and the system’s return to its previous state is observed.  In a press experiment, 
a permanent change is made to the strength of a link.  Frequent exploratory presses can 
be used to monitor system structure and state.  Changes in the interrelationships among 
system components will be evident through the results of press experiments.  The 
knowledge required for ecological experimentation to verify predictions about system 
structure is summarized in Table 3. 
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Table 3.  Knowledge required for ecological experimentation to verify predictions about 

system structure 
 

Knowledge about system Observation/Experiments 
Pulse experiment 
Add/remove a link 
Add a variable 
Remove a variable 

Explicit knowledge of system;  
manipulate parameters to evaluate effect 
of change on system-level response 
(ecological intervention experiments) 

Press experiment 
System well understood;   
evaluate effects of known parameter 
change 

Observation of effects of 
natural experiments 
(floods, fire, meteor strikes) 
- natural presses 

 

System not well understood; 
assess patterns of correlation to infer 
parameter change 

Observation of patterns of 
correlation from historical 
record 

  
Large-scale ecosystem experiments are impossible to replicate because of the size 

of the experimental unit and uniqueness of experimental conditions.  Ecologists look at 
natural presses and pulses, such as meteor strikes, eclipses, floods and weather 
phenomena (such as El Niño and La Niña) to observe if system response matches 
analytical predictions.  The uniqueness of the experimental unit has also prompted some 
ecologists to question the underlying stochastic methodology used to analyze such natural 
experiments.  Some analysts assert that ecologists are in fact Bayesians rather than 
frequentists (Ellison 1996). 
 Frequentists believe that there is a true, fixed value for each parameter of interest 
and that the expected value of this parameter is the average value obtained through 
repeated random sampling.  Bayesians, in contrast believe that statistical parameters are 
random variables.  Bayesian inference evaluates the probability that an explicit scientific 
hypothesis is true given (“conditioned on”) a set of data.  Bayesian inference incorporates 
the analyst’s beliefs about data as prior probabilities before an experiment is performed, 
and incorporates new knowledge from the experiment to derive a posterior probability.  
The process is iterated to refine parameter estimates (Ellison 1996).  Bayesian statistics 
present an elegant method for dealing with uncertainty, particularly when replicates (such 
as ecosystems or large computer networks) are rare or nonexistent. 

Cyber ecosystems are complex systems that exhibit hierarchical structure.  
Individual computers link together to form LANs which then are connected into larger 
networks.  Although the temporal scale of observation for some system components may 
be considerably reduced, to the level of nanoseconds and smaller, humans are still an 
integral part of the system and are associated with much longer response times.  Cyber 
ecosystems may also be stratified “spatially”, for example by operating system platform 
(PC, Unix, Mac) or by access to specialized networks (NIPRnet, SIPRnet, Internet).  The 
multi-layer hierarchical perspective may prove valuable to capture the many 
simultaneous aspects of these systems. 
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2.12 Generating hypotheses for cyber ecology 
 Since cyber ecology is a new field, new hypotheses may be as enlightening as 
results.  We face foundational issues.  What is a variable?  What is the unit of 
measurement for the strength of a link?  Other than through raw communication 
protocols, how are computers connected into networks? 
 In order to obtain broad perspectives about the structure and system-level 
responses of computer networks in this early stage of study, we will use Levins’s third 
modeling strategy: sacrifice precision for generality and realism.  Once we derive models 
that circumscribe broad classes of behavior, we will be able to perform more detailed 
studies in identified areas.  Initial descriptions and predictions of system-level response 
can be made and revised quickly with input from subject matter experts who will not 
need to invest heavily in the modeling technology. 
 Levins’s loop analysis provides a framework for using qualitative (monotonic 
data) to develop mathematically rigorous predictions of system behavior.  Developed 
from concepts of qualitative equilibrium in engineering (Mason 1953) and economics 
(Quirk and Rupert 1955), the technique assesses the compliance of system parameters 
with the Routh-Hurwitz criteria for stability.  Briefly stated, these criteria state that 
feedback at all levels must be negative and that higher level feedback must be less than 
lower level feedback.  Intuitively, these criteria make sense.  A stable system must take 
the time and resources to renew itself or it will collapse.  Loop analysis for mid- to large-
scale systems was impractical until only recently with the advent of powerful symbolic 
processors for personal computers. 
 Loop analysis has been criticized because of the ambiguity of its predictions.  Any 
interconnected community consisting of three or more components will be conditionally 
stable.  That is, any one of a myriad of point solutions will satisfy the conditions of local 
equilibrium.  Recent advances for assessing the determinacy of the predictions, in which 
weak predictions can be identified, have rectified many of these problems (Dambacher 
2000).  
 Loop analysis supports modeling by providing a means for constructing and 
testing models quickly and inexpensively (see Chapter 5 of this report).  Analysis of the 
community matrix gives the conditional stability criteria for a system.  The predictions 
obtained from loop analysis yield the direction of system response to a specific input. 

2.13 Humans in the loop 
Evidence of human impact on the environment is everywhere.  There is no spot 

on earth that remains untouched, either by the insidious spread of chemical pollutants, the 
effects of massive civil engineering projects (such as dams) climatic change, or 
deforestation.  In modeling the environment, man must be considered, either as an active 
participant within the system or as a source of input from outside the system.   

Human intervention adds the dimension of intent.  Above all else, humans depend 
on the environment for survival.  However, rather than merely coping with the effects of 
environmental change, humans seek to actively manage nature, selectively creating and 
destroying parts and wholes of ecosystems to satisfy human goals.  These actions may 
run counter to any logical pattern we may hope to discern in a self-organizing system. 

Cyber systems may resemble agricultural systems more closely than freely 
evolving ecosystems.  Agriculture is one example of human exploitation of the 
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environment.  The system is simplified to include fewer species and the cycling of 
resources into the system becomes more important.  The cyclicity of the system is 
emphasized as its maturity is held in check.  Exploitation exerts a rejuvenating effect on 
exploited ecosystems that we may also observe in cyber ecosystems. 

2.13.1 Science is not enough 
Humans are political beings.  Often what is scientifically obvious is not politically 

expedient.  Tradeoffs must be evaluated and decisions are often made that are 
inconsistent with best science.  Ecologists have felt the effects of the political dilution of 
science keenly.  For example, although many ecologists have found that habitat 
restoration for stocks of endangered fish, such as wild salmon, can only be accomplished 
through removal of hydroelectric dams, the demand for power makes this choice 
politically unfeasible. 

Ecologists have developed methods for incorporating stakeholder values and 
opinions into natural resource management.  Although, depending on one’s point of view, 
these have had limited success in natural resources management, they may prove 
valuable as tradeoffs become apparent in the implementation of IA measures.  In the 
adaptive management paradigm (Walters 1986, Walters and Holling 1990), for example, 
management is viewed as an iterative experiment where stakeholders reach consensus 
about management alternatives.  The process can be difficult and lengthy, but does result 
in the incorporation of best science into natural resources management. 

2.14 Summary 
In this chapter, we have explored the heritage of cyber ecology and the 

application of ecological theory and analytical techniques to this new domain.  We 
presented the following broad conclusions: 
• The development of cyber ecology is consistent with the historical development of 

ecology, albeit at an accelerated pace. 
• Structural similarities between ecological communities and computer networks 

suggest that the transfer of domain knowledge is justified. 
• System behavior of the whole is the expression of countervailing forces among 

components.  A synthetic approach is required to understand the apparently 
paradoxical behavior of complex, dynamic systems such as ecosystems and computer 
networks. 

• The thermodynamic, cybernetic and evolutionary perspectives of ecology also apply 
to cyber ecology.  The cybernetic approach is perhaps the most interesting in that the 
internal regulatory behavior of a network can be modified to achieve a desired 
system-level response (or resistance to response). 

• Experimental techniques used by ecologists show promise in elucidating the structure 
of computer networks.  In particular it may be possible to manipulate these systems 
experimentally.  Frequent exploratory interventions may represent a strategic tool for 
dynamically modeling changes in system structure.  
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3 Cyber Ecology Taxonomy 

This chapter of the report addresses the most basic level of exploration in which we 
apply ecological concepts to the classification of malicious code.  Higher levels of the 
community model will be addressed in subsequent sections.  In this section, we examine 
the network from a biological perspective, using insights contributed by biologists to 
formulate an ecological description of computer networks and attack.   

3.1 Why an ecological classification? 

The increasing sophistication of cyber attack has outgrown the limitations of the 
current taxonomy.  Dorothy Denning (1999) has suggested that viruses and worms, which 
she calls cyberplagues, “might be better characterized along multiple dimensions 
according to whether or not they propagate, whether those that propagate do so on their 
own or require user assistance, and what objects (if any) they attach to (executable files, 
documents, email messages, boot sectors, and so forth).” 

These attributes of computer viruses and worms constitute what biologists would 
refer to as their natural history.  Moreover, the presence of a human user to assist in 
propagation indicates that there is an interaction among at least two members of a 
community.  In order to assess the effects and implications of the interactive components 
of cyber attacks, they must be viewed from the perspective of the community, or 
ecologically.  Such models can describe:  

 
• potential breadth of an attack (in terms of lethality, number of species, and species 

abundance of organisms involved) 
• difficulty and points of control 
• predictions about future development 

 
Our goal is not to introduce new terminology.  The terms virus and worm are well 

defined and widely understood.  Although the original biological concepts are more 
complex for living organisms, we do not seek to replace existing paradigms with more 
biologically accurate analogies.  Rather, we will draw on insights into biological 
organization and hierarchy to suggest ways of understanding and interpreting new, higher 
levels of complexity in malicious code. 

3.1.1 How does an ecological classification differ from other types of classification 
schemes? 
Ecological classifications are based on the relationships that occur within a 

community.  They tend to be more general than other formal classification schemes that 
attempt to uniquely classify individuals into exclusive categories.  A discussion of 
biological taxonomies and taxonomies of computer attacks is presented as Appendix A.  
These schemes are often based on physical attributes in biology, or upon mechanistic 
attributes in computer security.  These classifications are informative and necessary, but 
not complete in their descriptions of effects upon communities and networks. 
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Ecological communities and computer networks are formed by the interactions of 
constituents.  The interactions vary in strength and may fluctuate over time.  As we 
observed in section 2 of this report, it is often necessary to examine a community from 
many points of view to acquire as complete a representation as possible of many complex 
interrelationships.  As the lens through which we view the community focuses on specific 
levels of aggregation, certain relationships may become more or less important and 
change functionally.   

For example, consider the natural community in which lions and gazelles reside.  
Lions are predators of gazelles.  Broadening our view, gazelles are ungulates and 
consume grass.  Widening our view further, humans kill lions.  Moreover, humans 
compete for resources with the entire ecosystem.  A description of lions alone does not 
give us an accurate picture. 

3.2 Definitions 
Biological organisms and malicious code clearly are not directly comparable. 

However, their presence and participation in complex webs of effects provides an 
opportunity to use biological models to generate hypotheses about malicious code.  
Population and life history parameters are particularly appropriate because they can be 
used to describe patterns of individual development and relationships among community 
members. We first provide parallel definitions of terms. 

3.2.1 Biological definitions 
The Malthusian parameters, reproduction rate, death rate, and generation time, 

are the fundamental variables used to describe population dynamics.  The basic 
reproduction rate is the number of female offspring produced by one female over her 
lifetime.  Death rate is the number of individuals that die over a specified time interval.  
Generation time is the time interval between birth and reproduction of offspring. 

A food (or trophic) web is a representation of a biological system composed of 
multiple interacting organisms (a community) through which consumption, but no other 
relationships can be traced.  All the members at one level of the food web feed on 
organisms at another level of the web.  Competition for resources and mutualistic 
cooperation are not represented. 

Communities are formed by the interactions of populations of organisms with 
each other and their environment.  In addition to trophic relationships, mutualistic and 
competitive relationships are considered. 

The environment in which an individual exists plays a critical role in its survival.  
Environmental variables may include weather, soil condition, presence or absence of 
water, temperature, and available nutrients.  Anthropogenic inputs resulting from human 
activity, such as dams, home construction, roads, and pollutants, are also present in the 
environment. 

Resources are anything at the bottom trophic level of a food web, typically 
chemical nutrients 

Lethality is the loss of reproductive capacity.  When an organism dies, its 
reproductive capacity is destroyed.  When an individual sustains a lesser level of loss, 
corresponding with reduced lethality, its reproductive capacity is impaired. 
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Intimacy is a loosely defined term that describes the proximity of an organism to 
its food source.  Typically, organisms in a resource poor environment are nonintimate 
because they must search for many prey.  Organisms in a resource-rich environment can 
enjoy more intimate relationships because their food sources are close at hand. 

3.2.2 Cyber domain definitions 
Depending upon one’s point of view, an individual may be represented as the 

network, an operating system, an executing or stored program, an email, or other entity.  
This multiplicity of viewpoints is consistent with ecological analysis, which encourages 
examination from many points of view to achieve a deep understanding of a system.  
Individuals may be combined to form systems, and these systems may be combined to 
form larger systems.  We provide four examples of individuals and define birth, death 
and their environments.   

 
Examples of individuals: 
 

(1) Installed program as an individual 
From the perspective of an installed program, an individual is born when the 

program is installed and dies upon removal.  Generation time is the time between 
installations of the program. The environment includes humans and storage media. 
 

(2) Executing program (process or thread) as an individual 
An individual is born when a program begins to execute and dies when execution 

stops.  Organisms can survive in a quiescent state, where they are present on disk as 
source or object code, but not executing.  The biological parallel of such a quiescent state 
may be a rhizome or plant bulb.  Generation time is the time between executions.  The 
environment includes humans, storage and powered-on computers. 

 
(3) Static code as DNA; computer as a cell 

The metaphor can be extended to a microbiological level, where the compiled or 
interpreted code represents DNA.  Interpreters analyze and interpret code as 
ribosomes interpret DNA for the manufacture of proteins in biological organisms.  
The computer is parallel in structure to a cell.  A network of computers constitutes an 
individual.  The network is born when the cells combine and interact and dies when 
the network ceases to function in a coherent manner.   The environment includes 
humans, storage, powered-on computers, and network connectivity. 

 
(4) Any actor represented as an individual   

Examples of actors include CPU, programs, host computers, networks, and 
humans.  Definitions for birth, death, and the environment are dependent upon the 
specific models. 

 
Resources include CPU cycles, bandwidth, and memory.  All of these are provided 

by computers and consumed by programs. 
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Food webs (also called trophic webs) are expressed in terms of resource 
consumption.  In computer networks, resources such as bandwidth, CPU cycles, and 
memory are consumed by other programs.   

Lethality is measured in terms of damage inflicted that reduces functionality.  It 
applies to a time interval, since computers and code may be replaced or repaired. 

Intimacy is a measure of remoteness.  For example, code may be executed remotely 
(nonintimate contact) or locally (intimate contact). 

3.3 Construction of the ecologically-based classification 

In this section, we demonstrate how a classification of malicious code-based 
information might be constructed using Malthusian-like parameters, as well as 
information about damage caused by malicious code and mechanisms employed. We 
begin by defining features of malicious code (variables). We collected data using publicly 
available descriptions of computer viruses and worms found on the World Wide Web, 
mostly published by virus scan companies.  The classification was constructed 
automatically from data using machine learning techniques. 

3.3.1 Variables 
In order to classify malicious code, we defined 16 variables based on the 

perspective of an installed program as an individual (the first example of an individual 
discussed in the preceding section). 

The biological parameter, lethality, was addressed by questions concerning loss.  
Lethality is expressed as damage to programs and can be inferred from the following 
questions: 
 
1. What is the potential damage to data and/or hardware? 
2. What is the typical loss of time (availability and recovery)? 
3. What is the potential for loss of confidentiality? 
 

Damage to data and/or hardware was classified as nuisance, deletion of relatively 
unimportant data files, deletion of system files, or deletion of entire file systems or 
nonfile data such as partition tables and boot sector.  Time lost was evaluated with 
respect to the estimated time necessary for recovery, in minutes, hours, days, or weeks. 
The presence of a confidentiality attack, that is, the possibility of unauthorized 
information transmission to another program, was noted.   Information about 
reproduction was captured by questions about replication and spread: 
 
4. Does it replicate? 
5. How does it spread? 
5a. Does it spread actively? 
5b. Does it arrive via an abnormal transaction? 
 

Malicious code was said to replicate if copies of the code were produced, for 
example using MS Outlook or IRC.  Spread was described as active when the code was 
dispersed by the program itself, through email or some other transaction.  Spread was 
inactive, or passive, if the program was incapable of supporting its own dispersal and 
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relied on factors in its environment, such as humans using a computer floppy disk to copy 
files from one machine to another.  For programs that spread actively, the manner in 
which the program transmitted itself was also noted.  Transmission through a corrupted 
or unauthorized transaction was labeled abnormal. 

The life cycle of the malicious code was described by responses to the following 
questions: 
 
6. Where does it reside? 
7. How is it run? (What causes execution?) 
8. Does it persist? 
9. How is it activated? 

 
The location of the infecting program was described as one or more of the following: 
 

• Runs as a new executable program (.exe, scripts, .com files) 
• Runs as an old executable program (changes .dll files, autoexec.bat) 
• Runs when user accesses data (macro) 
• Reconfigures (.ini, changes registry files) 
• Nonfile (partition table, boot sector, bios (PROM, flash), hvram) 
 
 
These are shown graphically in Figure 5. 
 

Site of 
infection 

File 

Nonfile 

old .exe 

new .exe 

user 

system

system

new .exe 
scripts 

changes .dll 
autoexec.bat 

macros 

config files 
(e.g., .ini, registry) 

partition table 
boot sector 
bios (PROM, flash) 
hvram (cmos) 

.exe 

data

 
Figure 5.  Classification of sites of infection by malicious code 
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The cause of execution was observed to be the user, autonomic (e.g., scanned 
network shares), or a transmission event (e.g., email).  Persistence, meaning that removal 
was necessary, and whether the code was permanent or transient was noted.  The 
requirement for human intervention, for example by opening an email attachment, was 
recorded, as was information about the environment: 
 
10. What is the OS? 
11. When was it discovered? 
 

The population dynamics of infecting programs and hosts over time were 
captured by the following questions: 
 
12. Is it currently extant? 
13. How quickly did it spread upon initial release? 
14. How wild was it initially? 
15. How wild is it now? 
 
Wildness refers to the extent to which malicious code is spreading among computer 
users.  It incorporates the number of sites and computers, and geographic distribution of 
these sites. 

To infer fitness, we collected information about the success of the malicious code 
in evading detection. 
 
16. How likely is it that users will notice: 

An associated event upon receipt? (e.g., a suspicious email) 
An event associated with infection? (e.g., a message or display) 
Functional problems? 

3.3.2 Data 
We gathered data for 24 computer viruses and worms, mostly using sources found 

on the World Wide Web (www.symantec.com, www.mcafee.com, www.f-secure.com, 
and others).   The viruses and worms for which data were abstracted were: Navidad, 
myna, Michelangelo, Morris worm, Macmag, Kakworm, Funlove.4099, Happy99, Scary, 
Pretty Park, VBS.Network, VBS.Loveletter, VBS.Stages, MTX, Qaz, Sonic worm, CIH, 
Marlburg, M97M.Chack, W97M.Onex, StrangeBrew, RemExp, HLLC.plane, and 
Christmas. 

3.3.3 Classification 
Using these data, we constructed a classification scheme automatically using 

machine learning techniques. Compared to the manual construction of a classification, 
the automatic construction does not require human expertise and tends to be less ad hoc. 
It usually requires an abundance of data, and tuning the parameters of machine learning 
algorithms is often a difficult art.  In the current work, we constructed a preliminary 
classification.  

Our construction of the classification consisted of two parts.  First, we used a 
clustering algorithm to find a specific number of clusters (classes) of malicious code.  
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Then, we constructed a decision tree so that we could determine a class of a malicious 
code based on its features.  Both processes were data-driven. 
 

3.3.4 Clustering 
The goal of the clustering algorithm was to find a specific number of center 

points, each of which represents a cluster or a class, using data points so that the sum of 
the squared distance from each data point to its nearest center point is minimized.  As we 
saw earlier, data are recorded as vectors of variables or features. Let d be the dimension, 
that is, the length of a data vector, and m be the number of data points. Then, minimizing 
the sum of squared distances is the same as minimizing the normalized squared distance 
E defined as follows: 

 
E = sqrt((sum_i=1 to m square_distance(nearest(ith_point), ith_point))/(m*d)), 

  
 where the squared distance of two points is defined as follows: 
 

square_distance(c, p) = sum_i=1 to d square(c(i)-p(i)) 
 

For the clustering algorithm, we used an unsupervised learning technique, the 
maximum-neuron-based (Takefuji et al., 1992) self-organization classification algorithm 
(Oka et al., 1996).  This algorithm converges faster than the more conventional 
Kohonen's self-organization map (Kohonen 1993). 

For each number of centers, we chose the best of 10 trials. The following table 
shows the result of this experiment. The first column shows the number of centers. The 
second column shows the error E defined above. The variable class represents the 
resulting class assignment for each data point. The third column shows the entropy of the 
class variable. Entropy is the amount of information contained in that particular class 
variable.  The fourth column shows the feature with the largest mutual information with 
the class variable, and the last column shows the feature with the smallest mutual 
information with the class variable. Mutual information indicates the degree to which 
knowing about a feature variable informs us about a class variable. They represent the 
most and least relevant features with respect to the class variable, respectively. 



  

39 

 
Table 4. Results of the clustering algorithm 

Number 
of centers 

Error H(class) Variable = largest 
mutual information 

Variable = smallest 
mutual information  

1 0.357 0 0 
2 0.343 0.98 active=0.344 
3 0.323 1.53 rcptevent=0.395 
4 0.31 1.9 extant=0.391 
5 0.303 2.04 os=0.658 
6 0.292 2.49 os=0.726 
7 0.279 2.76 os=0.679 
8 0.269 2.64 dam=1 
9 0.261 3.02 os=0.825 
10 0.245 3.26 dam=1.09 
11 0.229 3.27 dam=1.02 
12 0.229 3.47 os=1.07 
13 0.21 3.64 os=1.29 
14 0.204 3.55 dam=1.17 
15 0.21 3.67 os=1.07 
16 0.198 3.86 dam=1.24 
17 0.185 3.77 dam=1.35 
18 0.171 3.97 os=1.24 
19 0.155 4.08 dam=1.55 
20 0.155 4.08 dam=1.55 
21 0.153 4.08 time=1.45 
22 0.108 4.3 time=1.5 
23 0.125 4.14 time=1.45 
24 0.13 4.33 dam=1.55 

rep, whereother=0 
for all cases 
 

Key to variable names: active = Does it spread actively?; rcptevent = Is it likely that a user will notice an 
associated event upon receipt?; extant = Is it extant?; os = What is the operating system?; dam = What is 
the potential damage to data and/or hardware?; time = What is the typical loss of time?; rep = Does it 
replicate?; whereother = Where does it reside? (other) 
 

Formally, the entropy, conditional entropy, and mutual information are defined as 
follows: 
 

  entropy: H(class) = sum_i=1 to N -p(class=i)log2 p(class=i) 
  conditional entropy: H(class|feature) = 
                sum_j=1 to |dom(feature)| p(feature=j) 
                [ sum_i=1 to N -p(class=i|feature=j)log2 p(class=i|feature=j) ] 
  mutual information: I(X;Y) = H(X) - H(X|Y) 

 
The following graph (Figure 6) shows the plot of E and H in the above table.  The 

error E is an approximate linearly decreasing function of the number of centers for this 
data set. That implies that there is no “natural number” of clusters in this data set.  If the 
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number of natural clusters were three, for example, the graph would be flat after three. 
The graph for the entropy H indicates the resulting class distribution is consistently close 
to uniform, which is often preferable. 
 

 
  Figure 6: Graphs of E (left) and H (right) 

 
According to the above table, the feature with the largest mutual information 

varies, but some patterns can be seen.  The three features, damage, operating system, and 
time, consistently have large values of mutual information.  Two features, rep and 
whereother, do not possess significant mutual information with class, meaning that they 
can be safely ignored for the purpose of classification. 

3.3.5 Decision Tree 
We created a decision tree in which intermediate nodes represented features and 

leaves represented classes.  In order to construct a concise and generalizable decision 
tree, we used mutual information.  At each level, as the branching node, we chose the 
feature with the largest mutual information for the class variable with respect to the data 
belonging to the corresponding subtree. 

The following decision tree was created for the classification with three classes. 
In the tree, each intermediate node is labeled by a feature, and each arc is labeled by a 
value. The leaves contain the class number with examples of malicious code possessing 
all the attributes specified along the path, from the root of the tree to the specific leaf.  
For example, if it is likely that users will notice an associated event upon its receipt 
(rcpevent=likely), and it spreads slowly (spread=slow), the malicious code is classified 
into Class0, which contains the “Scary” virus. 

The decision tree created used only 4 out of 16 available features (Figure 7). It 
was compact and easy to inspect.  It was also generalizable and readily applied to new 
data. 
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Figure 7.  Decision tree with three classes 

 
In this section, we demonstrated the construction of a classification of malicious 

code based on ecological features using machine-learning techniques.  Since we were 
dependent upon well-described cases, our data were not representative of the entire body 
of past and existing malicious code.  In order to obtain more interesting results, more data 
are necessary.   Future research into this method of classification will require creation of 
a larger data set and tests of the usefulness of the results, such as prediction of unknown 
feature values using known feature values. 

3.4 Application of ecological theory to cyber ecological classification 
In this section, we discuss the general classification of malicious code using ecological 
principles.  

3.4.1 Biological classification 
Systematics is a biological discipline whose major goals are to describe biological 

diversity and to produce natural classifications based on relatedness (Marcus 1993).  
These goals are accomplished through the discovery and identification of living and fossil 
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organisms.  Taxonomy is the theory and practice of classifying this biological diversity 
(Chernoff 1986). 

Biologists construct taxonomies based on various types of information, including 
physical characteristics observed during examination of living and preserved specimens, 
observations about behavior and development, and information about habitat.  Artifacts, 
such as nests or ectoparasites, may also be used in a scheme.  Any aspect, although 
mostly inherited, can be observed and compared among organisms. 

For systematists, the most basic unit of classification is species, although this unit 
is highly controversial.  This simple concept is at the center of intense controversy among 
systematic biologists.  The three prevailing definitions are biological, phenetic and 
evolutionary (or phylogenetic) species.  Biological species, originating from Ernst Maier, 
are distinguished by their reproductive isolation.  Members of any one biological species 
can exchange genes within that species, but not with other species.  Phenetic species are 
described by their morphology and location.  Within a given geographical area, members 
of a phenetic species will share morphological characteristics that are distinct from other 
populations.  Evolutionary species are defined in terms of their history.  Members of a 
phylogenetic species share a history that can be differentiated from the history of other 
species.  Species is typically the finest grain of a hierarchical classification scheme.  In 
ascending order, the classification extends to genus, family, order, class, phylum and 
kingdom. 

A taxon is any formal unit in the taxonomic system. The classification of taxa is 
accomplished through the shared features, or characters, of organisms and lower-level 
taxa.  Characters may be nominal in nature (such as shape, color, or pattern), qualitative 
(such as long or short), or counts of discrete features (such as the number of toes).  The 
presence or absence of a feature, such as an amino acid in a protein, is also used. 

Biological and computer taxonomies are very different for a variety of reasons: 
(1) Computer viruses have no equivalent of DNA.  They consist of code in which it is 

easy to recognize uniqueness, but difficult to assign membership to larger groups; 
(2) Malicious code lends itself easily to descriptions of mechanism.  Biological 

organisms, because of evolution, exhibit structural and genetic characteristics that can 
be used for classification; 

(3) History.  Biological classification can be traced back through thousands of years.  The 
classification of computer agents is strictly a modern endeavor. 

3.4.2 Classification based on trophic strategy 
For ecologists, the identification of taxa assumes a secondary role to the 

identification of an organism’s placement within the ecosystem.  The location of the 
organism in the food chain (i.e., its trophic relationship with other members of the 
ecosystem) and its functional role within the community are of paramount importance.  
The functional classification of organisms includes:  
• Producers – mainly photosynthetic organisms responsible for the community’s net 

primary productivity. 
• Herbivores – primary consumers that feed directly on photosynthetic organisms. 
• Carnivores – prey on herbivores (as well as other carnivores). 
• Scavengers – feed on organic refuse or carrion. 
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• Parasites and parasitoids– consume the tissues of living hosts. Parasites feed on their 
hosts, but are not a lethal burden to them.  Parasitoid adults lay their eggs in host 
organisms.  The young feed on the living host until they reach adulthood.  When the 
adults emerge, the host is killed. 

• Decomposers – fungi and bacteria that break down organic debris. 
 

An alternative ecological classification scheme uses life history parameters (i.e., 
birth rate, death rate, time between generations).  We present a brief explanation of the 
mathematical derivation of the ecological classification.  For a more detailed analysis, 
please refer to Trophic Evolutionary Pathways: A Model Based on Life History 
Parameters (Morris and Rossignol, submitted).  The most basic parameters for describing 
population dynamics are the three Malthusian parameters: survival (l), fecundity (m), and 
generation time (t).  They can be used to model population growth with unlimited 
resources in the Euler, or Lotka-Euler equation  (Wilson and Bossert 1971): 
 

  
1 = tl tm − rte

t =1

∞
∑  

where lt represents survivorship, mt is fecundity, t denotes generation, and r is the 
intrinsic rate of population growth.  The Malthusian parameters may be observed 
empirically and used to determine the intrinsic rate of population growth, r. 
  The intrinsic rate of growth, r, describes the potential growth of a population 
without consideration of density dependence.  It is the per capita difference between 
births and deaths over a fixed period of time.  The fitness of an organism is determined 
by its intrinsic rate of growth.  In the absence of constraints, an organism need only 
increase its fecundity to attain a higher rate of intrinsic growth and increased fitness.  
However, in the face of limited resources, organisms must make tradeoffs to maximize 
fecundity while reserving enough energy to stay alive.  These tradeoffs have been 
represented in the controversial r- and K- model of selection.  Organisms that evolve a 
high rate of fecundity at the expense of longevity are said to be r-selected.  These 
organisms have many young, but short life spans.  Those organisms that have evolved a 
lower rate of fecundity while being able to breed for multiple seasons are termed K-
selected.  These organisms have few young, but longer life spans.  The r-K model has 
been problematic, and does not seem to apply to parasites that exhibit both r- and K- 
traits.  They invest reproductive energy into laying a large number of eggs (an r-selected 
trait), yet also into increasing egg size (a K-selected trait). Many adult parasites are long-
lived (another K-selected trait). 

Calow (1983) reconciled this discrepancy by demonstrating that parasites adhere 
to the r-K selection model, but within the context of a relatively rich nutrient 
environment.  That is, they are not faced with the same nutrient-limiting constraints as 
other free-living organisms because they essentially live in their food.  So, an r-selected 
parasite that lays many eggs may be relatively long-lived because of the abundance of 
available nutrients. 

For the ecological classification, organisms are described according their trophic 
strategies, that is, the methods in which they feed. Trophic strategies are grouped into 
four general categories, each corresponding to a mode of feeding.  Predators consume 
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multiple prey items throughout their lifetimes.  Grazers consume parts of many 
organisms in a non-lethal way.  Parasites also consume nutrients derived from their hosts 
in a non-lethal way, but are in more intimate contact with a single host.  Parasitoids 
derive nutrients from one host while in intimate contact, but eventually kill them.   

Pairs of organisms can be described along the dimensions of lethality and 
intimacy (Figure 8).  The gazelle-lion, prey-predator relationship is classified as lethal 
and nonintimate.  The gazelle is killed by a nonintimate organism, one with whom it does 
not have close contact on a protracted basis.  

 Lethality 

Intimacy 

Lethal and 
nonintimate 

Lethal and 
intimate

Nonlethal and 
nonintimate 

Nonlethal and
intimate

GRAZERS PARASITES

PREDATORS PARASITOIDS 

 
Figure 8.  Ecological classification of organisms 

 
The ecological classification allows for individual organisms to appear more than 

once in the classification scheme as members of different producer-consumer (e.g., grass-
gazelle) or prey-predator pairs.  The strength of this classification is that it represents the 
relative position of organisms in particular contexts within the structure of the ecosystem. 

3.4.3 How does this classification apply to computer networks? 
At face value, the biological analogy does seem to apply.  Cyber attack agents do 

seem to vary with respect to the damage they inflict upon target computers (lethality) and 
site of execution (remote or local; intimacy).  Agents such as viruses transmitted in email 
attachments seem to be r-strategists, while dedicated confidentiality attacks, which are 
fewer in number and more difficult to launch, seem to exhibit characteristics of K-
strategists. 

The analogy does not transfer completely, however.  All biological organisms 
reproduce.  Their trophic strategies reflect the manner in which they obtain energy for 
survival and reproduction.  The same cannot be said for cyber attack agents, some of 
which do not derive nutrients for these purposes from the attack. By design, they may or 
may not be capable of replication and this figures prominently in the breadth of attack. 

In order to capture the biological nature of cyber attack among agents that 
reproduce and to summarize the trophic-like strategies of those that do not, we stratified 
the ecological model into two layers: code that replicates, and code that does not.  These 
are summarized in Table 5.   

Replicating code exists that satisfies the criteria for cyber parasitoids, cyber 
parasites, and cyber grazers.  We have not found an example of replicating code that 



  

45 

fulfills the criteria for a predator.  The remote use of host resources for replication is 
problematic.  How can the resources of a host on which code does not run be used to 
spread that code?  Code generally uses the resources of a host by running on that host. 
The only case we have found of a remote, nonintimate relationship where code can use 
the resources of a host to replicate and spread without executing on that host is through 
the use of open network shares.  The code uses the interrelationship between client and 
server to inject itself into the network.   

Nonreplicating code fulfills the criteria for what we term pseudo-trophic 
relationships.  We use the term pseudo-trophic to describe relationships where the entity 
of interest does not replicate. Here, examples of predation do exist.  For example, 
damaging, remote denial of service attacks are examples of pseudo-predators since they 
act as predators, but do not replicate. 

Table 5.  Classification of replicating and nonreplicating malicious code using ecological 
classification 

 Replicating Nonreplicating 
 Intimate Nonintimate Intimate Nonintimate 
Lethal Parasitoid Predator Pseudo-

parasitoid 
Pseudo- 
predator  

Nonlethal Parasite  Grazer Pseudo- 
parasite 

Pseudo- 
grazer 

 
We describe code in each category of the classification in Table 6.  The 

dimensions of lethality and intimacy, which were defined earlier in the previous section, 
lie on a spectrum spanning values from low to high. At the extremes, they are clearly 
distinguishable.  Moving away from the extremes, however, differences become less 
distinct.  We have attempted to provide examples that are clearly separated as possible. 

The flexibility inherent in the description of a single entity in multiple categories 
allows for appropriate description from different perspectives.  For example, in Table 3 
above, from the perspective of the network server, a virus that spreads through open 
network shares is a cyber grazer.  It is consuming resources remotely in a nonlethal 
manner.  However, from the perspective of an individual computer served by the server, 
the same virus may be a cyber parasite. This ability to view relationships at multiple 
levels is consistent with the systems-level perspectives required to represent the network. 
As we incorporate broader areas of the network into our models, the relationships change.   
This multilevel approach also seems applicable in terms of network-centric warfare. 
Alberts, Garstka and Stein (1999) contrast platform-centric and network-centric warfare.  
In platform-centric warfare, platforms “own” weapons and weapons own sensors.  In 
network-centric operations, platforms, weapons and sensors can be reconfigured 
dynamically to achieve a commander’s intent.  Decision makers and actors can assume 
different roles depending upon the roles they assume in fast-paced battlespace domains. 

The basic ecological model of malicious code is not entirely foreign.  Adleman 
(1988) constructed an ecological taxonomy of viruses using the dimensions of 
pathogenicity (producing injury) and contagiousness (ability to spread).  He classified 
viruses into four disjoint, and therefore independent and mutually exclusive, categories: 
benign, Epeian (after the builder of the original Trojan horse of The Odyssey), 
disseminating and malicious.  Adleman’s taxonomy contained the germ of an ecological 
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taxonomy because it took into account the effect one type of virus had upon another.  For 
a more detailed discussion, please refer to the appendices. 

 
 

Table 6. Cyber classification based on trophic strategies 

Description Classification and examples 
Cyber parasitoid (replicating) e.g., virus 
that inflicts severe damage 
 

Intimate, lethal agents, cyber parasitoids, 
exist in close proximity with their host 
computers and inflict severe damage.  Like 
their biological counterparts, they may 
allow the host to live until it is time to 
execute their payload.  

Pseudo-parasitoid (nonreplicating) e.g., 
Trojan horse, logic bomb 

Cyber parasite (replicating) e.g., most 
viruses and worms 
 

Intimate, nonlethal agents, cyber parasites, 
exist in close proximity with their host 
computers, but do not cause severe 
damage.  Nonreplicating cyber parasites are 
merely annoying.  We include them even 
though they are not malicious. 

Pseudo-parasite (nonreplicating) e.g., 
Javascript in web pages (e.g., pop-up ads) 

Cyber predator (replicating) – no examples 
 

Nonintimate, lethal agents were discussed 
above.  They use host resources remotely 
to replicate. Pseudo-predator (nonreplicating) e.g., 

distributed, remote denial of service attack 
Cyber grazer (replicating) e.g., virus that 
spreads by open network shares on server1 

Nonintimate, nonlethal agents “harvest” 
resources from many computers, but do not 
inflict severe damage.   Pseudo-grazer (nonreplicating) e.g., 

unsolicited commercial email (spam) 

 

3.4.4 Cyber parasites 
During the course of our investigation of an ecologically based taxonomy of 

malicious code, we examined closely the characteristics of computer viruses and worms.  
Many of these agents fall into the quadrant corresponding with parasites in the ecological 
taxonomy.  We have termed these nonlethal, yet injurious, cyber agents cyber parasites.   

We define a cyber parasite as computer code that: 
(1) is intimate with its host (that is, its code constitutes a locus of control that executes 

on the host), and 
(2) replicates without the necessity of human intention or awareness. 

                                                 
1 *From the perspective of an individual machine, such an attack might be intimate and damaging 
(parasitic). 
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To date, most cyber parasites have been considered harmful by most people.  In the event 
that beneficial agents satisfying the two criteria listed appear in the future, the following 
third characteristic should apply: 
(3) inflicts damage. 
We discuss beneficial cyber parasites in Section 3.5.4. 

The concepts of trophism (feeding) and lethality must be generalized to span both 
the biological and cyber domains.  In biology, trophism (how an organism feeds) is a 
method of energy transfer.  By feeding on an organism, energy that was not available 
previously is liberated for use by the consuming organism. Cyber parasites consume 
resources such as bandwidth, CPU cycles, and memory from the hosts they infect. As in 
biological parasites, this consumption of the host’s resources is not lethal. 

3.4.5 Implications of cyber parasitism 
The model of cyber parasitism allows us to examine malicious code from an 

ecological perspective.  We briefly discussed the nature of parasitism in section 1 and 
will elaborate on the characteristics of parasites in general in this section. 

The life cycles of parasites are often complex.  Although they spend much of their 
life spans in intimate contact with their hosts, the young must find new hosts to infect.  
Many parasites infect more than one organism in their lifetimes.  They are vulnerable in 
this dispersal phase as they travel between hosts. 

Parasites and their hosts have evolved together over time, allowing parasites the 
opportunity to find a myriad of pathways through which to infect.  Again, we emphasize 
that the mere presence of actors in a community can be noninformative.  The nature and 
scope of infection is determined by the structure of the community and the manner in 
which actors interact within this structure.  The long association between biological 
parasites and hosts has allowed the development of a rich structure within which many 
different transmission paths have evolved.  These paths range in complexity from simple 
to contorted.  The more complicated transmission paths involve entire communities of 
organisms.  To our knowledge, the community model for disease transmission presented 
here is novel to both ecology and cyber ecology. 

3.4.6 Vector transmission 
In the transmission of vector-borne parasitic disease such as malaria, a vector, 

such as a mosquito, transmits the disease to a human.  The mosquito itself is also a pest 
that feeds on humans.  Malaria exploits the relationship between human and mosquito to 
propagate.  The malarial parasite uses a grazer, in a nonintimate, nonlethal relationship 
with humans, to bring it into intimate contact with its final host. 

The equivalent transmission of malicious code occurs when it is inserted into a 
legitimate communication, such as email, and transmitted to another computer.  As in 
vector-borne diseases such as malaria, the malicious code exploits a relationship between 
human and email.  In nature, organisms are either vectors or they are not.  Among cyber 
agents, varying degrees of vector-like behavior can be observed.  At the simplest level, 
the infection is brought into direct contact with the host.  Examples are the transport of a 
virus on a floppy diskette or as an email attachment.  Widespread use of mobile code will 
create opportunities for clearer and more literal vector transmission (i.e., a cyber parasite 
might infect a segment of mobile code in order to reach a new host). 
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Malaria Virus 

Biological model Cyber model

 
Figure 9. Biological and computer vectors of disease 

 
 

Vector-borne transmission is depicted graphically in Figure 9 as signed digraphs.  
Positive effects, those that cause an increase to one species from another, are represented 
with arrows.  Negative effects, those that cause a decrease to a species are represented 
with lines terminated in circles.  An arrow indicates that one variable causes another to 
increase.  A line terminated in a circle indicates a decrease from one variable to another.  
In this model, not all mosquitoes are infective, and it may take multiple bites to transmit 
the infection.  In the cyber model, we likewise assume that not all emails are infective.  
Emails are grazers because each one requires the use of a computer’s resources (memory, 
CPU cycles), but do not cause the machine to cease functioning. 

3.4.7 Complex community transmission 
Complex biological communities may also include parasites.  In these systems, 

the parasite depends on a number of sequential events to survive.  These organisms have 
evolved in tandem over long periods of time, providing evidence for the presence of 
stability that serves as a backdrop for this coevolution.  With increasing community 
complexity, simple low probability steps in transmission from intermediate to final host 
are replaced with longer chains of higher probability ones.  The relationships have 
developed because historically there has been a significant likelihood that the more 
complex chain will be maintained. 

Dicrocoelium dendriticum, the lancet worm, infects through a complicated 
transmission cycle.  The parasite is a trematode, which must live in snails during part of 
its life cycle.  To reach its ultimate host, a sheep, it must negotiate a tortuous cycle that 
begins when it is deposited in grass as the snail defecates.  The snail feces are then eaten 
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by ants. In the ant’s gut, the parasite divides into four sister clones.  One of the clones 
makes its way to the ant’s brain, where it modifies the ant’s behavior, causing it to crawl 
to the top of a blade of grass and cling to it, behavior that the ant would normally exhibit 
during a storm.  At the top of the blade of grass, the ant is more likely to be eaten by a 
grazing sheep.  The parasite is eaten and reproduces in the sheep, depositing its eggs in 
feces that are eaten by snails.  Dicrocoelium dendriticum has found an indirect way to 
enter the grazing relationship between the sheep and grass.  The community for this 
transmission cycle is shown in Figure 10. 

 
 

Snails Ants 

Lancet worm Sheep 

Grass 

 
Figure 10.  Model of a community-level parasitic relationship 

 
The mechanistic approach now taken to describe computer viruses and worms 

does not lend itself to recognition of these more complex transmission communities. In 
Figure 11, we present a possible model of a community that is vulnerable to community 
level parasitism.   

 
 

PDA 
(wireless)

On-line 
trades (web)

Company 
stock price

Email

Many potential 
pathways for input 

 
Figure 11: Signed digraph of a network vulnerable to community-level parasitism 
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Figure 11 sketches the inter-relationships among emails, wireless transmission, 
on-line trading and company stock price.  This network is vulnerable to community-level 
parasitism because cyber parasites may breach the system at any node and insert 
themselves into legitimate transaction streams.  In this way, cyber parasites may impact 
their desired targets indirectly. 

Indirect transmission paths have been described as indirect coupling, in which a 
virus is injected into the most accessible unprotected point and spreads to its objective 
target.  For example, a virus could be injected into a tactical data link, where it is 
transmitted to a tactical aircraft and propagates to a Command and Control Facility.  This 
is similar to the community-level model in that a parasite can be transmitted along 
legitimate transaction paths.  Community models, however, also incorporate indirect 
effects that depend on changes in behavior as well as propagation through links. 
Dicrocoelium dendriticum, the lancet worm, for example, modifies the behavior of an ant 
so that it is likely to be eaten by a sheep.  In a community model, chains of effects, as 
well as chains of transmission, are important. 

An interesting trend that we have recently observed is a composite attack 
consisting of modular malicious code such as MTX, consisting of a virus, a worm, and a 
backdoor.  Perhaps written by multiple authors, this type of malicious code represents a 
new level of sophistication.  The modules are specialized and work together in a focused 
attack.  The viral code infects, the worm code replicates, and the backdoor is the payload.  
While not a community per se, such new compound agents may represent movement 
toward more coordinated malicious code.  Given the possible diffuse nature of such a 
distributed attack, it may be difficult to assess the potential effects.  Observation of 
system-level response will be necessary to detect such attacks in time to minimize 
damage. 

3.4.8 Are cyber parasites protective? 
A controversial argument has been made in biology that parasites protect 

organisms from autoimmune disorders.  The reasoning is that parasites and their hosts 
have struck a delicate balance.  When the parasite is removed and the host’s immune 
system is no longer challenged by the parasite, the host will attack itself.  In this 
argument, the human immune system is tuned to behave optimally (for the human) in the 
presence of parasites.  This has happened because over evolutionary time scales, the 
presence of parasites has been normal for humans.  This is not the case for computers and 
computer networks, which are still designed assuming the complete absence of parasites.   

Cyber parasites may confer a competitive advantage to some members of the 
network.  Experimental evidence has shown that organisms that allocate significant 
resources to resistance against parasites may be less successful than those without 
defenses who accept the damage and allocate resources to compensate.  Resistance can be 
so expensive that it is not worth maintenance and it may be cheaper to yield losses.  
There is a need for balance. 

Cyber parasites may indirectly mitigate loss by encouraging vigilance.  The fact 
that they are common protects us to some extent.  Seeing malicious code all the time 
prevents us from seeing it the first time at a particularly bad time.  Michael O’Hanlon (in 
Schwartz 2000), a senior fellow and the Brookings Institution noted, “People do you the 



  

51 

favor of attacking you so often that you have a chance to build up protection. . . .  It’s a 
great way to figure out where your weaknesses are.”  

3.4.9 Have we observed evolution among cyber parasites? 
We have not observed coevolution between cyber parasites and their hosts nor do 

we have evidence that cyber parasites have driven the evolution of their hosts.  Cyber 
parasites to date have been targeted to specific hosts.  Although aspects of the host 
change over time, for example operating systems are continually updated (Figure 12), 
cyber parasites have not tracked these changes across successive versions.  They have 
been individually designed to follow applications that run under updated operating 
systems.  Evolution through natural selection cannot be targeted.  It is the result of many 
random mutations, most of which are unsuccessful. 

 
 

MSDOS 

WIN WIN3 WIN95 WIN 98

OS2 WIN NT WIN 2000

WINME 
 

Figure 12.  A family tree of operating systems 
 

3.5 Future trends 

3.5.1 Community attacks 
Wherever there is a longstanding, legitimate interaction or proximity between two 

members of a community, there exists an opportunity for parasitism.  In ecological 
communities, parasites and their hosts have coevolved over long periods of time.  In 
computer networks, evolution, in the sense of change over time, has been driven by 
human coders.  As the level of sophistication increases, the breadth of communities 
affected by cyber attack will surely grow.  Anticipating all possible mechanisms of 
infection is intractable.  Indeed, response to new cyber agents tends to be reactive, with a 
continuous parade of novel and imaginative malicious codes. We believe that the 
visualization of community structure and the associated pathways for infection will yield 
a more tractable solution space to the problem of diagnosis and treatment of cyber 
parasitic infections as well. 

During the week of 18 December 2000, news reports about the behavior of Kriz 
were published2.   A polymorphic virus spread through what we term direct transmission, 
Kriz was reported to have increased its range by attaching itself to worms, such as the 
Happy99.worm and Bymer.worm, and using these to spread.  If this is indeed the case, 

                                                 
2 ‘Kriz’ virus waiting for Christmas strike. 
http://www.cnn.com/2000/TECH/computing/12/21/kris.virus.idg/index.html 
Kriz virus makes a return appearance. http://www.zdnet.com/zdnn/stories/news/0,4586,2666836,00.html 
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then we will have observed an instance of community transmission occurring 
autonomously in the wild. 

More recently, a variant of the Klez worm, Klez.h, combined with older viruses to 
form ‘Klez cocktails’.  W95.CIH.1049, a slight variation of the Chernobyl virus, has been 
detected in recent infections of the Klez worm.  Vincent Weafer, senior director of 
Symantec’s Security Response Team noted, “As far as [Chernobyl] is concerned, the 
Klez worm is just another file to infect.  It’s quite common to see piggybacking effects 
when you have worms that have been propogating for a long time in the world.”3 

Targeted attacks are capable of inflicting much damage.  In August 2000, a 
former employee of Internet Wire issued a false press release stating that Emulex 
Corporation’s CEO had resigned.  The company’s stock plummeted.  In another incident 
in September, the SEC brought charges against a Cedar Grove, New Jersey, teenager for 
orchestrating a more distributed attack, a “pump-and-dump” scheme, in which he sent 
hundreds of anonymous email to message boards touting selected stocks.  These incidents 
may be the harbingers of more destructive automated attacks.  Attackers have found ways 
to insinuate themselves into the digital financial domain and to identify subsets of victims 
such as careless investors. Viruses and worms piggy-backed onto these schemes may 
inflict more finely tuned damage. 

David J. Farber, an Internet pioneer who serves on the board of the Electronic 
Frontier Foundation, an online civil liberties group, says that damage will increase along 
with dependency on the Internet.  He anticipates “disinformation experts” who will plant 
false rumors online, wartime equivalents of the PairGain scam in which a stock 
speculator created a sham financial news item on a web page that looked like part of a 
news service’s site.  “There are going to be a lot of interesting experiments done in this 
kind of psychological warfare,” he said (in Schwartz 2000). 

Vigilance is a key to protection, but we must learn where to look.  Public health 
programs for the control of parasitic infections find the weakest link in the transmission 
chain and break it.  In complex transmission chains, parasitic diseases and viruses may be 
transmitted by vectors that serve as intermediate hosts of disease.  In computer networks, 
email often performs a parallel function in the transmission of infection, serving as an 
intermediate host for transmission of malicious code from one computer to another.  In 
the case of vector-borne diseases such as malaria, the most effective control programs 
involve control of the disease vector, mosquitoes.  The disease organisms themselves are 
often too numerous to be controlled economically.  In Table 7, we compare the methods 
used to control a biological vector (mosquitoes) with existing methods of control for a 
cybervector (email).  

Control mechanisms come with associated costs, many of which are high.  In the 
biological domain, environmental modification requires a strong vertical structure and 
political will.   Larval source reduction programs, which were effective in eradicating 
Aedes aegypti from much of Central and South America, involved large, paramilitary 
organizations that enforced legislated controls prohibiting property owners from allowing 
mosquito production on their land.  The disease burden in afflicted areas was so intense 
that people accepted and continue to demand these controls.  Cyber control mechanisms 
also come with associated costs, some of which are excessive and difficult to maintain 
                                                 
3 Chernobyl virus rides Klez’s coattails. http://news.com.com/2102-1001-900050.html 
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(such as the prohibition of email).  It is clear that the vertical structure necessary to 
implement to eradicate cyber parasites in all but severely restricted domains is 
impossible, given the current perceived disease burden. 

 
Table 7. Equivalent control methods for biological vectors (mosquitoes) and cyber vectors 

(email) 

Region of control General method Biological  Cyber 
Genetic Breed resistant 

mosquitoes 
Do not use email 
programs that use 
attachments 

Vector  
 
(Induce changes in 
the vector 
population) 
 

Mechanical Zooprophylaxis 
(filter out diseased 
vectors) 

Screen out infected 
emails 

Behavioral Stay indoors during 
mosquitoes’ active 
periods 

Do not read email 

Barrier Use mosquito 
netting 

Use filters and 
firewalls as a barrier 
to entry 

Repellent Use insect repellent 
(e.g., DEET) 

Employ strong 
security measures as 
a deterrent  

Host 
 
(Evade, deter, or 
destroy vectors 
coming into contact 
with host) 

Mechanical Swat biting 
mosquitoes 

Run virus scan 
program to delete 
malicious code 

Introduce biocontrol • add a parasite of 
the vector (e.g., 
Microsporidia) 
• add a predator 
(e.g., Gambusia) 

No equivalent 
 
 
 

Mechanical removal 
of vectors from 
environment 

Spray with pesticide Prohibit email 
 
 

Environment 

(Modify network 
structure) 

Modify environment Drain standing 
water where 
mosquitoes breed 

Disable email 
servers during 
epidemics 

 
Biocontrols have been introduced in many areas to control mosquito populations 

by altering community structure.  Microsporidia, a protozoan parasite of mosquitoes, 
infects the eggs of infected mosquitoes.  This concept of a parasite of a vector can be 
extended to include hyperparasites (parasites of parasites, i.e., a computer virus that 
infects another virus), a strategy that has not yet been implemented to our knowledge, 
although it is a common occurrence in nature.   

For example, in July 1998, Paracoccus marginatus, the papaya mealybug, a 
parasite of papaya and cassava, was discovered in Bradenton, Florida.  A subsequent 
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search found three parasites of the mealybug, small wasps of the same family that cause 
the mealybug to mummify and “blow up like a cigar.”  However, the researchers also 
found six hyperparasites infecting these beneficial wasps, which had to be eliminated 
from the samples prior to transport to the U.S. 

3.5.2 Random mutations and evolution 
Life is a paradox.  Although extraordinary checks on the correctness of DNA 

exist, the evolution of life depends on random mutations.  Cyber parasites currently 
incorporate extensive error-checking code.  It may be possible, however, to construct 
malicious code that is designed to produce mutations.  Survival and propagation of these 
mutated cyber parasites would be closely analogous to natural selection. 

3.5.3 Monitoring system health with parasites 
It has been suggested that parasites can serve as sentinel species, indicators of the 

health of an ecosystem.  As we have noted earlier, the coevolution of parasites and hosts 
has resulted in finely balanced ecosystems.  The survival of parasites relies on the 
persistence of complex patterns of relationships within communities.  When these 
pathways are disrupted, populations of parasites will decline.  Parasites in distress may be 
indicative of a troubled ecosystem. 

The concept of sentinel species as indicators of ecosystem health is widely 
accepted.  In cyber communities, it may be possible to use cyber parasites as sentinel 
species.  The problem for computer security is how to distinguish a good virus from a bad 
virus.  This will only become harder as the number of viruses and their level of 
sophistication increase. 

3.5.4 Beneficial parasites 
Biologists avoid classifying organisms as “good” or “bad.”  From an 

anthropocentric point of view, organisms can be damaging or helpful to man, but this 
perspective does not incorporate an appreciation of the structure of the community and 
the myriad of indirect effects that percolate through it.   

Sometimes organisms must be controlled to mitigate economic damage and 
sometimes the cure is worse than the infestation.  There are many examples of biocontrol 
efforts that have gone awry as introduced species choose to prey upon species other than 
their targets, or decimate the population of species whose importance was not understood. 

The care with which the release of biocontrol agents must be planned and the 
frequency of unexpected consequences instills a sense of humility among biologists.  In 
one sense, “biocontrol” is a misnomer, because control is one thing that is lacking in the 
management of ecosystems. 

Beneficial viruses were discussed by Bontchev (1996).  He listed the following 
arguments against putatively beneficial computer viruses: 
(1) Spread cannot be controlled by the author. 
(2) It may be difficult to distinguish among “good” and “bad viruses. 
(3) They waste resources (disk space, CPU time, memory). 
(4) They may contain bugs. 
(5) The program may modify files and make them incompatible with a user’s 

programs. 
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(6) Non-replicating programs may be just as effective. 
(7) It is unethical to modify other people’s data without their authorization. 
(8) Modifying a program may violate copyright and void technical support 

agreements. 
(9) A “good” virus may be modified and misused. 
(10) Beneficial viruses condone the efforts of irresponsible virus authors. 
(11) Viruses compromise the users trust. 
(12) Viruses have a negative connotation. 

Bontchev described some “bad” examples of beneficial viruses that demonstrate one 
or more of the above arguments.  However, he concluded by explaining the attributes of a 
non-malicious, self replicating program.  The presence of such beneficial viruses in the 
cyber landscape may be inevitable, since we may be no more successful in controlling 
them as we are in controlling malicious viruses.  “Good” and “bad” programs are merely 
those that find niches to occupy among the many types of code resident in a computer 
network.  

3.6 Summary 
Ecology gives us a glimpse of the complexity of functioning, large-scale, dynamic 

systems.  Under favorable environmental conditions, the interrelationships among the 
system’s constituents form a framework that determines the stability or instability of the 
community.  The survival of vast numbers of individuals of many species on Earth is a 
testament to the strength of natural communities.  However, if communities are subjected 
to extreme stresses that cause them to disintegrate, some species that depend upon the 
community for survival are likely to become extinct. 

Achieving balance in large-scale computer networks will involve management of 
many types of actors – users, administrators, operating systems, ISPs, programs (both 
legitimate and malicious) – in many, many configurations.  Understanding the 
relationships among these actors and their cumulative effects on the community as a 
whole will be of paramount importance.  While the survival of any one individual may be 
impossible to predict, the survival of the network may be assured with high probability. 

Insights into biology provide an intuitive, easily understandable structure for 
describing malicious code.  As cyber attacks involving these agents become more 
complex and sophisticated, an accessible classification method will be necessary to 
compactly communicate information about the breadth, severity, and mechanisms of 
attack to nonexperts.  The taxonomy developed in this project provides one model from 
which such a classification might be constructed. Further research will be necessary to 
evaluate the effectiveness and practicality of the suggested classification.



  

56 

 

3.7 References 
 
Alberts D, Garstka JJ, Stein FP. 1999.  Network Centric Warfare: Developing and 
Leveraging Information Superiority.  CCRP. 
 
Bontchev V.  Are “good”computer viruses still a bad idea?  
http://www.virusbtn.com/OtherPapers/GoodVir/goodvir.txt (accessed 12/4/00). 
 
Calow P. 1983.  Pattern and paradox in parasite reproduction.  Parasitology 86:197-207. 
 
Chernoff B. 1986.  Systematics and long-range ecologic research.  In: Kim, K.C. and 
Knutson, L. (eds.), Foundations for a National Biological Survey.  Lawrence, KS: Assoc. 
Syst. Coll. 
 
Cramer ML, Pratt SR.  Computer viruses in electronic warfare.  
http://www.infowar.com/survey/virus_ew.html (accessed 11/16/00). 
 
Denning DE.  1999. Information Warfare and Security.  Addison Wesley, Reading, MA. 
 
Kohonen T.  1993. Physiological interpretation of the self-organization map algorithm.  
Neural Networks 6: 895-905. 
 
Marcus LF. 1993.  The goals and methods of systematic biology.  In: Fortuner, R. (ed.),  
Advances in Computer Methods for Systematic Biology: Artificial Intelligence, 
Databases, Computer Vision.  Johns Hopkins University Press, Baltimore, MD.  
 
Morris AK, Rossignol PA. Trophic evolutionary pathways: a model based on life history 
parameters. Submitted. 
 
Oka ST, Ogawa T, Oda T, Takefuji Y. 1996. A new self-organization classification 
algorithm for remote-sensing images.  In: Proceedings of the Adaptive Distributed 
Parallel Computing Symposium. August, 1996. 
 
Shreve J.  2000 (December).  Insecurities Exchange.  Wired. 
 
Schwartz J. 2000.  When point and shoot becomes point and click.  New York Times 
November 12 2000: 16. 
 
Takefuji Y, Lee KC, Aiso H. 1992. An artificial maximum neural network: a winner-
take-all neuron model forcing the state of the system in a solution domain. Biological 
Cybernetics 67: 243-251. 
 
Wilson EO, Bossert WH. 1971. A Primer of Population Biology. Sinauer Associates, Inc. 
Sunderland. 



  

57 

4 Epidemiology 

We begin this chapter with a discussion of basic concepts in infectious disease 
epidemiology.  We discuss previous work by others applying the concepts to computer 
viruses.  We develop a mapping of one metric, the basic reproduction rate, from human 
disease to computer viruses and worms.  We also develop the metrics, generation time 
and doubling time.  We then present our results.  We describe a simulation model we 
have developed for internal validation of the analytical model.  We close with a 
discussion of a notional concept of operations, a description of future work and 
conclusions. 

The work in this chapter summarizes the efforts of the Information Assurance 
Cyber Ecology Project in mapping epidemiological parameters to cyber threats, where 
these threats are modeled as diseases.  The approach is ecological because the 
transmission depends on many ‘species’ within the cyber community, such as software, 
malware, and humans. Detailed explanations of the procedures developed and 
calculations performed are contained in Appendix C. 

4.1 Epidemiological models of disease transmission 
Disease transmission models describe the manner in which disease spreads within 

human populations.  Epidemiologists use compartmental models that capture transition 
between states.  Humans may pass through several disease states during the course of a 
disease.  These disease states are often represented as acronyms, such as MSEIR, with 
each letter representing a class or compartment.  The compartment M contains infants 
with passive immunity to infection.  The compartment S is the class of susceptible 
individuals, those who can be infected by a disease organism.  Infants in class M progress 
to this class when their maternal antibodies disappear.  Upon adequate contact of a 
susceptible individual with an infective individual, the susceptible enters into the 
compartment E the class of exposed individuals.  When this individual is infectious, that 
is, capable of transmitting the infection, he or she enters into compartment I the class of 
infectives.  When the infectious period ends, the individual enters into compartment R the 
class of recovered individuals.  Many possible permutations of these compartments are 
possible, depending upon the disease modeled and the flow patterns between 
compartments.  Some of these models are MSEIRS, SEIR, SEIRS, SIR, SIRS, SEI, SEIS, 
and SI. (Hethcote 2000). 

In the context of the broader environment, we can expand our focus to include 
disease organisms and vectors as well as human hosts.  The simplest method of 
transmission, direct or host-to-host transmission, occurs when a disease is transmitted 
from one host to another without passing through an intermediate species.  Only one 
species, the host species, is required for transmission.  Time delays occur only when one 
host infects another.  The equivalent of direct transmission is transmission of a worm 
directly from one computer to another, for example as in Code Red. 

Indirect transmission, requiring or involving more than one species, can be 
mechanical or biological.  Mechanical transmission occurs when the etiological agent of 
disease passes through one or more entities, which may be living or non-living, and are 
not required for transmission. Any delays that occur are incidental and not necessary for 
incubation.  For example, cholera may be introduced into a river and it will take a certain 
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length of time for it to move downstream.  Cholera is transmissible at the onset, and the 
delay is not required for transmission.  Mechanical transmission occurs when the disease 
agent is transported through mechanical vectors, such as dirty syringes, soil, water, or 
even currency (such as dollar bills) and possibly some insects.  The cyber equivalent of 
mechanical transmission is a virus transmitted on a floppy diskette. 

Biological transmission can occur through one or more intermediate hosts or 
vectors.  Disease is transmitted from intermediate hosts to subsequent hosts when the 
subsequent hosts incidentally consume infected intermediates or their infected by-
products.  Vectors transmit the disease to subsequent hosts by biting them.  There is a 
time delay, or incubation period, between the time of infection of a host or vector and that 
of the subsequent host.  For example, intermediate hosts play a role in the life cycle of 
Dicrocoelium dendriticum, the lancet worm, shown in Figure 134. Snails are an obligate 
intermediate host and ants are infected when they ingest the slime balls produced by the 
snails.  For viruses that spread by sending email, the emails can be thought of as 
intermediate hosts.   
 
 
 
 
 
 
 
 
 

Figure 13.  Life cycle of Dicrocoelium dendriticum 
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4 http://www.biosci.ohio-state.edu/~parasite/lifecycles/dicrocoelium_lifecycle.html 
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In vector transmission, a vector is typically capable of infecting multiple hosts 

(Figure 14).  There are at least two incubation periods, in the vector, in the host, and in 
any other intermediate species.  A pest acquires the etiological agent, and then transmits 
it to the host organism. Vector transmission occurs in some Microsoft Word macro-
viruses, where an infected document infects a template, which in turn is capable of 
infecting many more documents.  Vectors are an important consideration in disease 
transmission because they dramatically increase the potential for spread.  A vector 
facilitates transmission to many hosts much more suddenly than is possible with direct 
transmission. If we consider emails to be vectors then an email to a large mailing list can 
spread a virus to many hosts simultaneously. 

 
 

Direct transmission Vector transmission 
 

Figure 14.  Patterns of direct and indirect transmission 

 
Transmission through vector and intermediate hosts implies the existence of a 

community.  For example, if sheep, snails and ants were not frequently found in the same 
meadows dicrocoelium dentriticum could not survive.  Similarly, Microsoft Word 
macroviruses depend on the association of Microsoft Word documents and templates, and 
email viruses depend on the association of computers and emails.  We can reasonably 
consider these associations to be communities. 

These theoretical concerns have minimal impact upon the practical monitoring of 
the spread of malicious code in human time.  The viruses are so efficient, and 
transmission, whether analogous to biological, mechanical, or direct transmission, occurs 
so quickly, that complex disease transmission may be modeled effectively using simple 
models.  Time delays become important when they represent human contributions to the 
spread of cyber disease, such as the time between receipt of an email by a host computer 
and execution of an infected attachment by the human recipient of the email. 

4.2 Previous work 
Several individuals have modeled particular viruses or worms on an ad hoc basis 

and have produced estimates similar to the results presented in this report5.  A goal of the 
Cyber Ecology project is the systematic development of broadly applicable procedures 
for the rapid generation of useful models.  

                                                 
5 An excellent example of this is Stuart Staniford’s analysis of the Code Red worm published on the 
CyberPanel community mailing list (cpc@schafer-ballston.com) on 20 July 2001. 
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Previous published work in cyber epidemiology consists primarily of a series of 
technical reports by Jeffrey O. Kephart, Steve R. White and David M. Chess at the IBM 
Thomas J. Watson Research Center that examine the problem of computer viruses from 
an epidemiological perspective.  Overall, the authors (mostly Kephart and White) make 
the point that computer viruses have a pattern of spread that is ‘biological’, taking into 
account some topological considerations.  They argue that the focus so far has been at a 
micro-level, typically code.  A macro-outlook is lagging but necessary with the 
continuing spread of computer viruses.  They attempt to lay the theoretical foundation of 
this new emerging science. 

Their first paper, Computers and Epidemiology (Kephart, et al. 1993) simply lays 
out the premise and defines terms from epidemiology and population dynamics, 
explaining a basic model of disease spread.  They emphasize the concept of epidemic 
threshold as a target for control, maintaining that one need not detect every virus to stop 
its spread.  Topology is then addressed in detail, analogous to dispersion patterns in 
epidemiology.   

Computer Viruses: A Global Perspective (White, et al. 1995) examines the spread 
of viruses worldwide.  They make some important practical points on data collection, 
notably the concept of virus incident, which is the beginning of an infection within a 
particular topological unit.  They also make a novel point, which is that the number of 
new virus species is not growing exponentially, but roughly linearly.  The parameters 
explaining the comparative prevalence, present or future, of different viruses are 
unknown.  They compare various viruses, both file and boot viruses, the last being 
expected to increase with networking.  The misconceptions of the media are examined 
with the Michelangelo virus. 

Directed-Graph Epidemiological Models of Computer Viruses (Kephart and White 
1991) is a modeling effort to support the concept and potential use of epidemic threshold. 

How prevalent are Computer Viruses? (Kephart and White 1992) analyzes 
Dataquest and CertUS data.  They further extend the biological/ecological analogy, and 
introduce immunology and preventive health.  They underline some major deficiencies in 
our birth-death rate models of spread and equilibrium, in that none satisfactorily explain 
(and therefore do not predict) the discrepancy in prevalence levels of surviving viruses.  
Again, they imply that the answer lies in topology.  They state that worms are probably 
the greatest threats in the future, because of their ability to spread around the world in 
hours.  They are eventually eradicated, but every worm is a new worm.  Detection of 
worms is fraught with problems because they spawn through active processes, a 
legitimate activity.  They suggest that examining collective behavior of many systems 
may help but, overall, they are skeptical and express a tremendous concern over the 
future threat from worms.   

Measuring and Modeling Computer Virus Prevalence (Kephart and White 1993) 
follows up on the hierarchical concept of topology.  A model suggests that a ‘kill signal’, 
hunting for viruses in neighboring machines, would be very effective in stopping spread.  
They advocate a proactive rather than reactive anti-virus programs. 

Overall, this prior literature indicates that the epidemiological analogy is valid and 
explains the general behavior of viruses.  However, the authors indicate that differences 
between the viruses, such as among equilibrium levels, are not explained by this 
approach.  We propose that a model of higher organization, of community rather than 
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population, may provide insight into these differences.  Community models use 
population level parameters, but integrate them with community-level effects.  Complex 
relationships will result in counterintuitive changes in levels and turnover rates within a 
community that are not necessarily predictable from a life table approach. 

More recently, Pastor-Satorras and Vespignani (2001) have simulated the epidemic 
spread of computer viruses in scale-free networks.  Using prevalence data, they show that 
many computer viruses persist at endemic levels over long periods of time, without 
exhibiting the property of an epidemic threshold.  This finding that sufficiently large, 
scale free networks support endemic levels of disease highlights the importance of 
monitoring rates of spread.  We develop metrics based on those used in public health 
monitoring to assess the rate of spread (basic reproduction rate, generation time and 
doubling time) in this report. 

4.3 The basis of infectious disease epidemiology: the Ross model 
Infectious disease epidemiology is rooted in the work of Ronald Ross.  At the turn 

of the twentieth century, Ross elucidated the life cycle of malaria and showed that 
mosquitoes were an obligatory vector for the parasite.  His subsequent “theory of 
happenings” revolutionized infectious disease epidemiology and malariology.  His theory 
described the importance of “dependent happenings” in the transmission of infectious 
disease, the occurrence dependence of infectious disease in individuals upon the 
occurrence of disease in other members of the population.  Ross’s model incorporated 
both disease organism and host.  Since infectious disease epidemiology concerns the 
relationships among disease organisms, host organisms, and the environment, many 
epidemiologists consider it to be an extension of the science of ecology (Halloran 1998).
 Ross devised the model to answer a specific question.  Having gained the 
knowledge that mosquitoes are vectors of the disease, Ross wished to know whether 
mosquito eradication was a prerequisite to malaria eradication.  This question was most 
troubling because it was known even at that time that mosquito eradication was 
unrealistic on a broad scale.   

The model calculates the basic reproduction rate (BRR), R0, of malaria.  By 
definition, R0 is the mean number of infective secondary cases generated by a primary 
case over its average duration.  The derivation can be achieved a number of ways, the 
first here being an algebraic one devised by Macdonald. 

Assuming that hosts and vectors are uniformly distributed and that no cases 
currently exist, one can calculate the number of cases that one primary case would 
generate.  First, there are a certain relative number of vectors, m, which is the number of 
vectors divided by the number of hosts.  Given that female mosquitoes (males do not 
blood feed) only bite once per period of egg development and that only a certain 
proportion will bite a human host when doing so, only a proportion, a, the biting habit, 
will actually bite on a given day.  It consists of the proportion biting human beings 
divided by the length of the oogonic cycle.  The product, ma, is then simply the number 
of mosquitoes biting one host per day, and is called the man-biting rate.  Once the 
parasite is acquired, it must undergo a long extrinsic period of incubation, of duration n 
days, before the vector can infect a host.  The duration of incubation is substantial, and 
often longer than the average life expectancy of the vector.  On any day therefore, only a 
proportion, p, of vectors survive, and thus only a proportion, pn, survive the incubation 
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period.  These infective vectors still bite at a daily rate, a, for -ln(p)-1 days.  Their 
efficiency of transmission is labeled b.  This represents then the proportion of human 
cases generated per day on host infection, which must then be multiplied by the duration 
of infection, r-1, where r is the recovery rate. 

The product of these parameters represents the basic reproduction rate of malaria, 
namely, 
 

R0 =   ma2pnb 
r(-ln(p)) 

 
The basic reproduction rate must be equal to unity for malaria for maintain itself, 

and therefore must be less than one for extinction to occur.  Given that none of the 
parameters are 0, it can be seen that the number of vectors, m, need not be reduced to 0 
for eradication to be successful. 

Three unexpected properties emerged from the model.  First, there is a non-zero 
threshold for all parameters.  Second, there is a hierarchy of parameters, with m being 
linear while a is square, and p is exponential.  Third, it is possible to obtain a linearly 
proportional estimate of the basic reproduction rate in the absence of the parasite and 
from entomological parameters only.  This practical tool was used extensively during 
eradication campaigns and is known as vectorial capacity (C) (Bailey 1982), namely, 
 

C =   ma2pn 
         -ln(p) 

 
Furthermore, the model is notable in that it incorporated a time-delay (the extrinsic 

incubation period), still a difficult aspect of modeling, in an elegant and ingenious 
fashion.   The model was nothing short of extraordinary.  It provided a theoretical basis 
for understanding transmission, pointed to specific methods of measurements and 
estimation, and managed to incorporate difficult modeling problems.  For these reasons, 
it has remained a source of study to this day. 

4.4 Modifying the Ross model for email viruses 
In the cyberworld, the attribution of parameters to host and vector differs from that in the 
description of biological disease.  In Ross’s model, r and b were contributed by the host 
and m, a, p, and -1/ln(p) were contributed by the vector.  In the biological model, m 
represents the ratio of vectors to hosts; it is the total number of potential contacts 
available to one vector.  In the transmission of email viruses, m is functionally equivalent 
to the average size of Outlook address book.  The man-biting rate appears twice in the 
Ross model, as the probability that a vector will bite prior to and following infection.  In 
the cyber model of email transmission, two probabilities are also involved in 
transmission, but they are distinct.  The probability that the virus will bite can be thought 
of as the probability that the virus will infect emails sent from the infected computer.  
This process is very efficient and near unity.  The second transmission probability is 
anthropogenic, the probability that the human recipient will execute an infected 
attachment.  This parameter contains significant variability and is affected by the user’s 
interest and awareness of potential infection.  Since the transmission probabilities are not 
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completely determined by the behavior of the virus, the metric analogous to vectorial 
capacity cannot be derived for cyber email viruses that require execution of an 
attachment.  The resulting quantity, 
 

 R0 =  ma 
 
describes the short-term reproductive potential of a perfectly efficient disease agent that 
is transmitted to all contacts in a completely susceptible population without recovery.  
While this model is unrealistic biologically, it is very descriptive of the spread of email 
viruses through executable attachments. Email viruses, such as Kak, that do not spread by 
executable attachments, evade detection and are able to persist on the host.  We add the 
life span parameter to the simple email model to capture this behavior.  

The transmission parameters used to calculate BRR can be summarized in a life 
cycle diagram.  The life cycle diagram is a graphical representation of the transitional 
states of a particular virus or worm.  These states are abstracted from technical 
descriptions of the virus or worm, for example, the summaries published on the World 
Wide Web by anti-virus companies.  Variables describing attributes such as the size of 
the address book, are multiplied by probabilities, such as the probability of executing an 
infected email attachment, to derive BRR.  The life cycle diagram for the email virus, 
Anna, is shown in Figure 15.  We estimate Anna’s BRR to be 0.7  * 70 * 0.1 = 4.9. 
 

executing

in email

executing

b = 70

a = probability receiving machine
runs Outlook
b = mean number of addresses in
address book
c = P(attachment will be opened)

c = 0.1

a = 0.7

 
Figure 15.  Life cycle diagram and transmission parameters for Anna 

4.5 Practical application of BRR 
BRRs are used in public health to assess the epidemicity or endemicity of a 

contagious disease.  It is often considered to be a threshold quantity that determines when 
an infection can invade and persist in a new host population.  When the BRR is unity, a 
stable state exists where each infection produces on average one additional infection.  
The disease is endemic, that is that it persists at a constant, often low level in the host 
population.  BRRs less than unity indicate that the disease is in decline.  BRRs greater 
than one indicate that the infection is growing.   

BRR provides a method for comparing different diseases.  It is used in public 
health as a practical tool for evaluating the effects of intervention measures, such as the 
application of insecticides, to control disease.  Field models are used by public health 
workers on the front lines of the battle against infection, to monitor disease state during a 
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control campaign.  BRR may be calculated on a village-by-village basis and used to tailor 
control strategies in a localized manner.  Careful, small-scale experiments were and 
continue to be conducted to assess incremental changes in mosquito density, life 
expectancy, and biting rate to determine the effects of control regimens on model 
parameters.  Changes in BRR provide a rapid index that enable experienced workers to 
quickly assess a situation and determine the severity of a disease outbreak and the effects 
of control measures. 

In order to produce comparable BRRs for infectious malicious code we use default 
parameters.  We feel these parameters are reasonable first estimates.  One way to make 
the BRRs more precise would be to collect information about these parameters in the real 
world.  We suggest that this is one way for a network administrator to assess the 
vulnerability of his network.  It is also a way to measure incremental improvements in 
defensive measures. 

4.6 Construction of BRR for malicious code 
The pivotal contribution of the Ross model is the marrying of patterns of contact 

with transmission probabilities.  BRR is built on state transitions.  Analogously to the 
assessment of BRRs by public health professionals in human populations, we assess the 
BRRs of viruses and worms in populations of computers by identifying the transition 
states of the infection and associating quantities and probabilities with these transitions. 
We have found that life-cycle graphs provide an intuitive, visual method for describing 
state transitions and time delays.  Life-cycle graphs for the malicious programs analyzed 
in this report are shown in the Appendix C. 

Although we calculate the value of BRR deterministically, the actual occurrence of 
many parameters is most certainly stochastic. For example, the number of recipients per 
email is stochastic with an unknown, but highly skewed distribution - many emails are 
intended for only one recipient, but others can have numerous recipients. The parameter 
value we use is our estimate of the geometric mean of this distribution, which is five.  

Some state transitions that occur with probability equal to one are not called out 
separately in the model.  For example, the probability that a computer running Windows 
will require a reboot is not given since rebooting is a fact of life for Windows users. 

For some of the parameters, default parameters are difficult to assign because the 
probabilities vary from case to case.  For example, the probability that a recipient will 
open an email attachment depends upon: 

• the number of identical messages received; 
• whether or not the sender is a trusted source; 
• the message line and whether the infection can be recognized from this 

information; 
• increased awareness of viruses and worms because of media reports. 
All of the examples of email viruses we have studied require Windows and Microsoft 

Outlook.  We have built our estimates under the assumption that 70 per cent of senders 
and recipients of email use this software combination.  

Infectious spread for many email viruses depends on the recipient not deleting the 
email on arrival.  We place this probability at 0.6.  Then, the recipient must open the 
attachment and the virus program must execute.  We place the probability of this event at 
0.1.  This probability may be significantly reduced by the presence of anti-virus 
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definitions on the recipient’s computer.  This may result in significant variability in 
BRRs.  This is a parameter that a system or network administrator may be able to 
estimate for his or her network to obtain a more precise estimate. 

Default parameters for calculating BRR of an email virus are: 
• proportion of computers using Outlook and Windows .7 
• mean number of addresses in an Outlook address book: 706 
• probability that email attachment is executed:  0.1 
We analyzed a worm, Kak, and found that two additional parameters were necessary 

to describe its transmission cycle.  Kak spread relatively slowly relative to the other 
infections we analyzed and was able to contribute multiple infections over time, prior to 
detection.  In addition, it piggybacks on legitimate email messages sent by users rather 
than sending its own.  The parameters added to describe these behaviors were: 

• mean number of recipients per email:      5 
• mean number of legitimate email messages:    21 
• probability that recipient does not delete file on arrival:  0.6 
Many infectious cyber agents spread through multiple modalities.  LoveLetter, for 

example spread not only through email, but also through mIRC and by replacing many 
types of files such as .jpgs and .mp3s, with infected copies.  Additional default 
parameters are required to calculate the BRR for these agents.  Each transmission 
modality is treated as a separate branch of the life cycle.  One branch, such as email 
transmission, may account for the initial epidemic rise of the infection, while another 
branch, such as mIRC or in file transmission may contribute at a lower level over time.  
The effect of this continued, low level of transmission is to maintain an endemic level of 
infection in the susceptible population for a period of time exceeding the duration of the 
initial infection in length.  In the BRR calculations, we call out the transmission specific 
and total estimates for BRR. 

Default parameters contributing to the BRR of mIRC transmission are: 
• probability that mIRC is used on a computer.  We set this probability to 0.1 in our 

example calculations. 
• mean number of IRC users on a channel at a given time.  We set this to 20. 
• probability that a recipient does not delete the infecting file on arrival.  We set this 

at 0.6. 
• probability that a recipient runs this file given that it was not deleted.  We set this 

at 0.4. 
 

Additional default parameters are also needed to describe in file transmission: 

                                                 
6 Our confidence in this estimate has been reinforced by a recent small survey conducted by Scott Musman 
at IMSI.  Discarding outliers, the mean size of address books he observed was within 20% of this estimate. 
(Personal communication 01 Aug 2001). 
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• mean number of files overwritten.  For LoveLetter, we set this to 300. 
• probability that any given file will be transferred to another machine.  We set this 

to 0.1. 
• probability that a recipient does not delete the infecting file on arrival.  We set this 

at 0.6. 
• probability that a recipient runs this file given that it was not deleted.  We set this 

at 0.4. 
BRR represents one aspect of the spread of disease that describes infectious spread.  

It incorporates parameters such as the average number of contacts, probability of 
transmission, and duration of contact.  Only those parameters that pertain to replication 
are included in the calculation of the BRR.  Confidentiality attacks, resulting for example 
from transmission of a Trojan horse, or denial of service attacks resulting from mass 
mailings, are not addressed by the BRR. 

Cyber infections spread by execution of email attachments require intervention by the 
user, who must click on the attachment to execute the virus program.  These viruses are 
relatively obvious and control is relatively straightforward.  Media coverage often alerts 
large numbers of users to the presence of the virus and/or worm and control measures are 
publicized.  The simplest control measure is to not click on these attachments.  

Worms that spread automatically, such as Kak, are another matter.  They may elude 
detection for long periods of time and continue to infect over an extended period of time.  
For these worms, we do account for additional cases infected over time in the BRR 
calculation.  That is, BRRs will generally tend to be high because of an extended period 
of infectiousness. 

We analyzed one macrovirus that spread through infected Microsoft Word 
documents, Ethan.  Ethan then infects the Microsoft word template, so that all documents 
processed in Word are subsequently infected.  The virus spreads to other documents on 
the same computer, and to documents on other computers when these documents are 
transferred between computers.  We examine the case where infected documents are 
attached to email and opened on the recipient’s machine.  The parameters that capture 
this behavior are: 

• mean number of uninfected documents on a host:   25  
• probability that recipient does not delete email on arrival:  0.5 
• mean number of legitimate emails sent:    300 
• probability that the email contains a Microsoft Word attachment: .05 
• probability that the file sent is infected:    0.9 
Life cycle graphs, basic reproduction rate, generation time and doubling time 

calculations for all the malicious code analyzed are shown in the Appendix. 
Other aspects of disease, complementary to BRR, are morbidity and mortality.  

Virulence is a measure of the speed with which a parasite kills an infected host.  In 
infectious disease epidemiology, this information is expressed as the case-fatality ratio, 
the probability of dying from a disease before recovering or dying of another cause.  
Among cyber infections, the virulence of an infection can be inferred from the level of 
resulting damage. 

BRR is generation based, since it represents the mean number of infected individuals 
that result from one infected individual.  To explore the temporal aspects of spread, such 
as the number of cases expected within a given time interval, it is necessary to quantify 
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generation time.  Epidemics are characterized by an initial sharp rise in the number of 
cases.  The ideal shape of this curve is shown in Figure 16. The sharpness of the epidemic 
curve indicates the speed of attack.  One metric that captures this information is doubling 
time.  The total number of cases may be reduced by countervailing forces, such as anti-
virus definitions and increased public awareness. 

 
Figure 16.  Epidemic incidence curve 

 
Generation time is computed from delays between events.  Biologically, generation 

time is the length of time between reproducing females.  We define generation time for 
computer viruses and worms to be the mean length of time between initial execution on 
two hosts, one of which has infected the other.  For computer viruses and worms, 
generation time is built from the mean lengths of delays between executions.  For 
example, if a computer must reboot before a virus program may execute, the mean period 
between delays is incorporated into the generation time for that virus.  When multiple 
transmission paths are present, we calculate the generation time for each path 
independently. 

Some of the delays we have used to construct generation times for the examples in 
this report are: 

• Mean time to reboot – We make the assumption that a computer using the 
Windows operating system will need to reboot every 12 hours.  Assuming a 
uniform distribution over this 12 hour period, the mean time between a 
prerequisite event (such as infection) and the next reboot is 6 hours.  This applies 
when the virus requires a reboot to execute. 

• Mean time until sending email – We assume that email is not sent continuously, 
but in spurts or batches every 8 hours.  Assuming a uniform distribution over this 
8 hour period, the mean time between a prerequisite event and the next time email 
is sent is 4 hours.  This delay applies when the virus attaches itself to legitimate 
email messages. 

• Mean time between email being sent and read – Likewise, we assume that email 
is not read continuously, but periodically. We assign a mean period of 6 hours 
between when email is sent and when it is read.  While many emails are read 
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shortly after they are sent, many others are sent during times when the user is not 
likely to read them promptly, such as in the middle of the night. 

 
Generation time may be calculated by associating delays with the state transitions 

captured in the life cycle diagram. The generation time for Anna is six hours and is 
visually illustrated in Figure 17. 
 
 

 executing

in email

executing

Delay between email 
sent and read = 6 hours

 
 

Figure 17.  Generation time for Anna from the life cycle diagram 

 
Using generation time and BRR, we calculated doubling time using the formula:  

 
doubling time = generation time / log2 BRR 

 
This formula is exact when generation time is a fixed constant.  When generation time is 
variable, the result is only approximate.  We estimate the doubling time for Anna to be 
2.6 hours. 

4.7 Reconciliation of data 
We have calculated the BRR, generation time, and doubling time for six examples, 

three email viruses (Pretty Park, LoveLetter, Anna Kournikova), a email worm (Kak), a 
hybrid virus/worm (MTX), and a macro virus (Ethan).  For each, we perform the 
following analysis: 

• Analysis of technical description for state transitions and delays; 
• Calculation of BRR. We compare these with BRRs derived in public health to 

describe the potential for spread of human diseases; 
• Calculation of generation time; 
• Calculation of doubling time; 
• Estimation of time between release and peak number of infections, when 

published estimates were available. 
We also present the graphs of actual reports received by two major anti-virus 

companies.  The two companies use very different methods for disinfection and have 
geographically separate customer bases.  Anti-Virus Company 1 intercepts email prior to 
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receipt at scanning towers.  The email is scanned, disinfected if necessary, and forwarded 
to the intended recipients.  Anti-Virus Company 2 receives reports of infection when 
users initiate a virus scan.  These reports are user-driven.  Discussions with an analyst 
from Anti-Virus Company 2 revealed that the numbers of reports of all viruses often 
spike simultaneously following media reports about any virus, because these reports lead 
many users to initiate virus scans.  Other patterns in self-initiated virus scans include a 
spike after Christmas and in the autumn at the start of the school year, and a decrease in 
the summer.  Because the data from Anti-Virus Company 2 contain fluctuations which do 
not reflect activity of the target virus, they are less useful for deducing incidence trends 
than data collected by scanning towers. 

Our models behave favorably against published reports and observed behavior in the 
data provided, particularly considering the vague estimates assigned to the transmission 
parameters. 

The estimated doubling time for the email form of LoveLetter is 3.6 hours.  Published 
reports estimated the total number of opened attachments at 1.9 million is one day 
(Kelsey 2000).  Using the calculations in our model, a total of 1.9 million infections 
would be achieved along the email transmission branch between 7 and 8 generations 
(25.2 – 28.8 hours). 

The estimated doubling time for Anna is 2.6 hours. One million infections would be 
achieved between 8 and 9 generations (20.9 – 23.4 hours).  Published reports during the 
outbreak indicated that the virus was spreading “twice as fast as the Love Bug” (Shipp in 
Leyden 2001).  This is inconsistent with our estimates.  Even though the generation time 
was less, the concommittant low BRR in our estimates led to one half as many total 
infections over a 24 hour period. 

The estimated doubling time for Kak is 2.2 hours.  This estimate disagrees with real 
world data that show very slow growth.  Kak was found in the wild in late 1999, but 
never achieved explosive growth.  Anti-virus companies did not list it as a top threat until 
Summer 2000, after an incident in which it was mass mailed to 50,000 email addresses 
(Sullivan 2000). Our estimates do not account for the effects of counter measures, such as 
patches and anti-virus signatures.  We speculate that signatures that counter Kak were in 
place very soon after Kak’s release.  Such signatures may even have preceded Kak’s 
release because Kak exploits a vulnerability that was previously used by another worm, 
Bubble Boy.  Kak may be an example of effective defense against a precocious worm. 

The estimated doubling time for MTX is 41 hours.  This is approximately half the 
doubling time of seven to eight days shown in the data obtained from Anti-Virus 
Company 1.  This doubling time is based on a BRR of 1.24, which is very close to the 
BRR of 1.0 indicating control. 

In most of the example viruses we studied, real-world data did not capture the initial 
outbreak.  Instead, we have observed fluctuations in the endemic phase of disease in the 
population of computers.  Control in this phase is also important.  Relaxed vigilance may 
result in a resurgence of disease. 
 

4.8 Results 
The parameter values used to calculate the basic reproduction rates of PrettyPark, 

LoveLetter, Anna, Kak, MTX and Ethan are shown in Table 8.  The procedure for 
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calculating generation time, basic reproduction ratio and doubling time for each virus or 
worm is illustrated in detail in Appendix C. 
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Table 8.  Summary of Results: Parameter values, generation times, basic reproduction ratios, and doubling times for  

PrettyPark, LoveLetter, Anna, Kak, MTX and Ethan 
Name Branch G eneration BRR Doubling

a c d e f g h I j k l m n q r Time (H rs) Time (H rs)

PrettyPark em ail 70 0.05 0.7 6 2.45 4.6

LoveLetter file 300 0.1 0.6 0.4 0.7 726 5.04
irc 0.6 0.4 0.1 20 0.7 198 0.336
em ail 70 0.2 0.7 12 9.8 3.6

Anna 70 0.1 0.7 6 4.9 2.6

Kak 0.6 1 0.7 5 21 12 44.1 2.2

M TX em ail 0.07 0.7 5 10 0.5 12 1.225 41.0
file 0.1 0.7 0.1 1440 0.007

Ethan sam e host 0.7 25 6 17.5 1.5
new host 0.6 0.7 300 0.05 0.9 72 5.67 28.8
(via em ail)  

 
Parameter description   
 
During one generation: 
a=mean number of files overwritten l=mean number of legitimate email messages 
c=P(file being transferred to another machine) m=P(virus does not exit due to finding anti-virus software) 
d=P(recipient does not delete file on arrival) n=number of uninfected documents on a host 
e=P(recipient runs file given it was not deleted) q=P(email contains Microsoft Word attachment) 
f=P(mIRC is used on a machine) r=P(sent file is infected) 
g=mean number of IRC users on a channel at a given time  
h=mean number of addresses in address book  
i=P(attachment will be opened)  
j=P(use Outlook and Windows)  
k=mean number of recipients per legitimate email  
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These threats can be ranked by the magnitude of the basic reproduction rate.  This 
ranking shows the relative level of threat posed by each threat in terms of potential for 
rapid spread. 

In Figure 18, we show the BRRs calculated for the examples of malicious code 
analyzed in this report against the BRRs for some common infectious human diseases.  
The BRRs for the more vector-like malicious agents, Kak and Ethan, have the highest 
BRRs of the viruses and worms studied.  However, very high BRRs, for example on the 
order of the BRR of 3007 for malaria, were not observed in this subset.  

The BRR provides a proactive metric for describing the potential for spread of 
viruses and worms.  It may provide a useful metric for planning and resource allocation.  
We may increase its fidelity by incorporating more accurate information about the 
human-driven aspects of transmission and countermeasures.  These may be highly 
variable as evidenced by the disparate epidemic trajectories of Anna and Pretty Park, 
which may be due in large part to the differential allure of the purported attachment 
contents.   

                                                 
7 Molineux et al. (1978) report values for the parameters of malaria transmission in sub-
Saharan Africa that allow us to estimate basic reproduction rate (BRR).  From an 
entomological perspective, BRR is the product of vectorial capacity (C), duration of 
infection (1/r) and efficiency of transmission (b). 

BRR = 
r

Clb  

From the tables in the study, the maximum BRR can be up to approximately 500, which 
is the number of secondary cases potentially generated from a primary case over its 
infective period.  Similar values can be reached from inoculation rates (which are 
parasitological rather than entomological).  While malaria has reputedly the highest BRR 
of any human disease, BRR is dimensionless in that the denominator of the rate is 
generation time, not real time.  Comparisons of BRR values must be made with this fact 
in mind.  A study by Rosenberg et al. (1990) reports parameters of BRR in Thailand that, 
from our calculations, reach over 100 in value. 
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Figure 18.  Comparison of BRRs for human and cyber disease 

4.9 Sensitivity analysis 
We performed a sensitivity analysis to assess the stability of the calculations.  We 

varied the parameters, singly and in combination, and observed any change in the results. 
In Figure 19, we observed the effect of changes in the mean number of addresses in 

the Outlook address book on doubling time.  The resulting curve depicts the expected 
behavior, an inverse relationship.  Doubling time is sensitive to the number of addresses 
when the address book contains fewer than 50 addresses.  Doubling time decreases 
sharply to this value and then levels out.   
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Figure 19.  Mean number of addresses vs. doubling time 

 
In Figure 20, we graph the mean number of addresses in the Outlook address book 

against BRR.  The resulting curve is a linear, increasing function.    The number of 
addresses is directly correlated with BRR.  We observe a similar pattern in Figure 21, 
Generation Time vs. Doubling Time. 
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Figure 20.  Mean number of addresses vs. BRR 

 
To visualize the effect of changes in the number of addresses and generation time on 

doubling time, we used a three-dimensional surface plot (Figure 22).  The graph displays 
a waterfall pattern.  The graph implies that to control doubling time, it is necessary to 
restrict both the size of the address book and generation time. 
 



  

75 

 

0

1

2

3

4

5

6

7

0 5 10 15 20 25
Generation Time

D
ou

bl
in

g 
Ti

m
e

 
Figure 21.  Generation time vs. doubling time 

 

4.10 Simulation 
We now present an individual-based ecological simulation of viral spread for an email 
virus.  We present this simulation as a tool to be used by system and network 
administrators, analysts, and decision-makers to monitor the vulnerability of their 
networks, much as field studies are conducted by public health professionals to monitor 
the force of disease among human populations. 
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Figure 22.  Number of addresses and generation time vs. doubling time 
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The individual-based model simulates the viral spread of an email virus that 
spreads via email attachments. When an infective attachment is executed, the virus first 
replicates itself, generating many copies of itself in the victim’s computer.  Then, it sends 
itself to everyone listed in the victim's address book (here assumed to be the Microsoft 
Outlook address book).  In this manner, the virus can replicate itself extremely quickly.  
There are three modeled populations in this model: computers, email viruses, and anti-
virus software.  Each member of a population and its interactions with other members are 
simulated individually.   

The purpose of the simulation program is to provide internal validation of the 
analytical model.  It is a simulation program constructed written in PV Wave, a 
graphically based programming language.  The simulation captures the dynamic spread 
of infection with simultaneous variation in multiple parameters.  The complex behavior 
of the analytical model could not be captured in the sensitivity analysis. 

The simulation program is not included in this report, but will be submitted in a 
future deliverable as part of the Cyber Ecology Toolkit.  We submit a summary of the 
simulation program here to document the parameters included in the internal validation. 

4.10.1 Computers 
Each computer has a limited set of parameters that indicate the properties of that 

computer: 
• ID. A unique ID number represents each computer. 
• Location. (x, y) coordinates represent each computer’s location in the cyber space. 
• Infection status. Non-infected, infected, infective, immune. 
• Number of email addresses. Number of email addresses in the address book, 

which is a random number following a lognormal distribution. 
• Number of files over written by the virus. A random number following a 

lognormal distribution. 

4.10.2 Virus 
Each email virus possesses the following attributes: 

• ID. A unique ID number. 
• ParentID. ID of parent virus.  
• Host computer ID. ID of computer on which the virus resides. 
• Activity status. Active or inactive. 
• Execution status. Yes or no 
• Execution time. Discrete time steps after the virus is created following a Poisson 

distribution. 
 

4.10.3 Anti-virus 
Currently, anti-virus is not a simulated agent. It is a trigger that switches immune 

status from infective (or infected) to immune.  Trigger activity is based on user-defined 
probability distributions. 
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4.10.4 Interaction parameters 
Interactions within the simulation model are determined by probabilities:   
• Pd.  Probability that recipient does not delete file on arrival. 
• Pb.  Probability that the attachment will be opened before the virus alert. 
• Pa.  Probability that the attachment will be opened after the virus alert. 
• Na.  Number of files overwritten (follows a lognormal probability density 

function). 
• Nh.  Number of addresses in address book (follows a lognormal probability 

density function). 

4.10.5 Environment 
To facilitate visualization of the cyber space, we restrict it to two dimensions in the 

simulation. Computers are represented as distributed uniformly across a two-dimensional 
array.  Each computer is represented as a particular (x, y) location in the array. It is 
important to note that positions in this two-dimensional space are essentially random and 
not spatial locations of computers, and that the geographic neighbors around a computer 
do not imply networking connections.   

4.10.6 Simulation description 
The simulation is performed through a series of discrete time steps corresponding 

to hours.  This time frame is short enough to model epidemic behaviors, specifically 
epidemic rise.  The computer population size is 256 x 256; i.e., each computer occupies a 
location in a 256 x 256 grid.  In the beginning of each simulation, one hundred viruses 
are created and each virus is randomly assigned to a host computer.  During any given 
time step, each virus will respond individually to initialize a new viral focus of spread 
through the email list in the victim’s computer.   
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Figure 23.  Screen shot of simulation interface for visualization 

 
The simulation interface for visualization is shown in Figure 23.  The main menu appears 
as buttons along the left side of the window.  The states of the computers included in the 
simulation are shown in the central window as they change over time. 
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Figure 24. Screen shot of simulation interface for parameter input 

 
Figure 24 shows the parameter input window.  The distributional aspects of user 

specified parameters such as number of addresses in the Outlook address book, 
generation time (email checked (hr)), and number of files overwritten, are specified by 
mean and variance.  These parameters are used to generate the random states shown in 
the simulation. 
 
 

 
Figure 25.  Simulation output 

 
 The simulation produces statistical and graphical output.  A screen shot of the 
graphical output is shown in Figure 25. 
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4.11 Notional concept of operations 

4.11.1 Student cyber security education 
Some of the transmission parameters identified in this work are anthropogenic.  For 

example, the parameter, probability of executing an email attachment, may lend itself to 
modification by educational efforts similar to health education campaigns.  Such a 
campaign might be targeted at youth, who are often the primary users of computers at 
school and in the home.  Many secondary schools have computer labs and competent 
students functioning in a limited role as network administrators.  An intervention could 
be delivered during the school year.  Industry mentors could contribute immensely in 
building the practical competence of these students in dealing with security threats for the 
school, their families, and other students. The effectiveness of the intervention could be 
monitored annually by written questionnaires or in an ongoing manner (Jorgensen 2002). 

4.12 Conclusions 
Metrics are needed that succinctly capture the magnitude of cyber threat.  BRR 

provides a basis for comparison based on the potential for infectious spread.  This can 
serve as one basis for resource allocation, particularly when resources must be distributed 
to combat many threats simultaneously. 

Decomposing the phenomenon of the rapid spread of computer viruses and 
worms in terms of public health analyses allows us to examine different facets of control.  
Two metrics that may contribute to more effective control strategies are the estimated 
basic reproduction rate and generation time of a cyber virus or worm.  These metrics 
contain parameters inherent to users and changes in user behavior can be encouraged and 
their effects measured.   

The basic reproduction rate is a linear function composed of the product of the 
mean number of contacts and probability of transmission. Control strategies that reduce 
the effective size of the address book, i.e., the number of vulnerable addressees, or reduce 
the probability of transmission, will lead to reductions in the basic reproduction rate. 
Reductions may be achieved by scanning email upon arrival, the use of filters and 
wrappers and the use of non-Windows or non-Outlook software. 

The work presented assumes homogeneous mixing in a susceptible population.  
Barabasi and Albert (1999) demonstrated that large networks such as the World Wide 
Web are organized as scale-free networks, in which heterogeneity arises from a few 
highly connected nodes.  Recent work by Pastor-Satorras and Vespignani (2001) has 
examined the spread of computer viruses in scale-free networks.  Pastor-Satorras and 
Vespignani found that in this model epidemics spread relatively slowly and non-
exponentially in their early phases.  Lloyd and May (2001) note that these scale-free 
models might be poor models for human interactions, since heterogeneity is usually low 
in networks describing relationships among individuals.  These models may not be the 
most appropriate ones to model diseases passed by social contact, such as email viruses 
spread by Outlook address books.  From a more practical point of view, in smaller, local 
networks, homogeneous mixing assumptions may be entirely appropriate, making the 
simple BRR the tool of choice for predicting the spread of an infectious virus in this more 
limited domain.  Furthermore, if the virus or worm contains a mechanism for limiting 
spread, it will not fully exploit the scale-free nature of very large networks, and might be 
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adequately described by homogeneous mixing.  For example, Code Red V1 limited its 
spread to eight possible neighboring IP addresses, in essence fixing the size of its pool of 
potential hosts. 

The focus of this report will now turn to an examination of the broader 
community, exploring the complex system dynamics of computer networks in Chapter 5. 
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5 Cyber Ecology and System Health 

In cyber systems as well as ecosystems, there is a general lack of understanding about the 
workings of the system.  Historically, individual ecosystem components have been 
extensively studied, while the internal structural interactions among components have 
remained less understood.  In computer networks, this pattern holds as well.  Individual 
components designed and manufactured by humans are well studied and understood, 
although the structure that emerges when these components are assembled into a system 
with complex interactions is not.  In this chapter of the report, we address analytical 
methods for the high-level analysis of complex cyber systems. 

5.1 System health 

Health represents a tradeoff among the qualities of performance, vigor, and resilience.  
When assessing the health of the system we must also consider all of the attributes in this 
triad.  Although one system may be more vigorous in the sense of stability in the face of 
disturbance, other factors, such as efficiency and recovery are also important when 
deciding upon a desirable configuration. 
Nielsen (1999) has described health in terms of the ecosystem’s “capacity for maintaining 
biological and social organization on the one hand and the ability to achieve reasonable 
and sustainable human goals on the other.”  He noted that, “there are two dimensions to 
the idea of health.  The first is the capacity for maintaining organization or renewal, and 
the second is the capacity for achieving reasonable human goals or meeting needs.”  The 
capacity to maintain organization incorporates the ideas of resilience, vigor, and 
homeostasis.  These three attributes contribute the integrity of the system. 
In information assurance, we are concerned with analogous attributes of the network:  
 
Ecosystem health Information Assurance 
Vigor; energy throughput Ability to process information and produce 

desired results, performance 
Organization; complexity; ability to 
maintain system structure through stress 

Ability to maintain system structure and 
functionality 

Resilience; capacity to bounce back when 
stress is relaxed 

Ability to rebound following perturbation; 
recovery 

 
Various indices are used to assess ecosystem health, such as diversity.  Diversity, 
however, should not be used as a surrogate measure of complexity.  Some systems are 
inherently less diverse than others, but are no less healthy.  The arctic tundra, for 
example, contains far fewer species than a tropical rain forest.  Yet within the given 
environmental constraints, both may be healthy in that they process energy efficiently, 
they are stable, and they are resilient. 
Changes in indices, however, can be used as warning flags.  Rapport (1997) lists several 
ecosystem transformations that signal an ecosystem in distress.  These are: 
• Reduced vigor – reduction in the energy throughput and level of activity; 
• Reduced resilience – reduction in the capacity of the system to rebound following 

stress; 
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• Reduced organization – reduction in the level of complexity (e.g., number of species 
and their degrees of interaction); 

• Reduced services – impairment of services due to stress; 
• Reduced management options – reduction in uses that might be implemented in 

unstressed conditions (e.g., recreation); 
• Increased subsidies – diversion of resources from other areas to maintain production 

levels; 
• Damage to neighboring systems – exports from one system cause damage to another, 

either by direct application or competition. 
These are the changes that tell us when the system is in distress.  We discuss each of 
these in the context of network health.   
• Vigor (Performance): Vigor is a reduction in the throughput of a system.  In a 

database application, throughput is a measure of the total number of queries handled 
by the server during a given time. A reduction in the number of inputs progressing 
through the transaction buffer and into storage is a reduction in the vigor, or 
performance, of the system.  In a denial of service attack, packets that are dropped 
because of the saturation of the capacity of the system to process them are indicative 
of a reduction in vigor.  At a higher level, a reduction in mission throughput because 
of work interruptions is also indicative of a reduction in the vigor of the system. 

• Resilience (Recovery): Networks may exhibit protracted periods for recovery from 
certain types of attacks.  System administrators are often evaluated by the frequency 
of downtime incidents and their durations.  Increases in these factors are indicative of 
decreased system resilience. 

• Organization (Functionality):  Network functionality is often tied to specific 
platforms (ISS, Apache, Novell, to name a small subset).  When critical functionality 
is performed by one specific platform, compromise of that platform places the entire 
network at risk of failure.  Increased diversity within functions providing critical 
functionality provides redundancy that may be important as the network responds to 
attack.  Reductions in diversity signal potential increased vulnerability.  Introductions 
of such vulnerabilities are often associated with reduced management options. 

• Reduced management options:  Certain management policies may require that 
specific services and activities be curtailed.  For example, exclusive implementation 
of proprietary protocols (i.e., Microsoft-only networking services) result in decreased 
diversity and organizational richness.  These are harbingers of potential system 
distress.  Other examples include operating system upgrades that render older 
versions of certain software applications nonfunctional, effectively removing them 
from the network ecosystem and implementation of Active-X controls on 
collaborative web-based clients.  Active-X controls constrain the use of browser to 
Microsoft Explorer and effectively remove other browsers from the local network 
ecosystem, with a concomitant reduction in network diversity. 

• Reduced services: Ecosystem services are natural processes that benefit the users of 
the network.  They are not necessary for the continuation of the network per-se, but 
they do allow a more robust response to transient insults.  For computer networks, 
examples of  ecosystem services include installation of security measures, such as 
anti-virus software, and system utilities.  These services increase the stability of the 
network and enhance the users’ ability to perform work.  Decreases in the provision 
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of such services, for example, due to decreased availability of system and network 
administrators, are indicative of system distress. 

• Increased subsidies:  An ecosystem requires subsidies when its internal processes are 
insufficient to sustain itself.  For example, obligatory application of fertilizers to soil 
indicate that the ecosystem is not functioning at a sustainable level.  Likewise, for a 
computer network, when the system is not sustainable without continuous input of 
external resources, its overall health should be questioned.  Such a situation may 
occur, for example, when outside consultants are continuously required for network 
operations.   

• Damage to neighboring systems:  This distress indicator occurs when one system or 
service suffers at the expense of another.  Often it is the result of a fixed resource base 
that is insufficient to maintain all critical functions of the network.  For example, a 
policy may be implemented to update software only, not hardware or a choice may be 
made to maintain email services, but to sacrifice employee web-access.   

The health of the agroecosystem is determined by a balance between human activity and 
the natural environment.  Waltner-Toews and Nielsen (1995) describe a healthy 
agroecosystem as one that “exhibits a high degree of integrity, operates efficiently, has a 
strong capacity to respond, and meets the reasonable goals of the shareholders,” where   
• integrity is the degree to which an agroecosystem maintains its organization or 

structure,  
• efficiency is the degree to which an agroecosystem efficiently processes energy and 

materials, and  
• resilience is the ability to cope in the face of unpredictable stressors, and effectiveness 

is capability of the agroecosystem to meet the reasonable goals of stakeholders.   
These qualities correspond to those used to address the health of computer networks.  
Efficiency is analogous to performance, integrity to functionality, and resilience to 
recovery.  Effectiveness measures the degree to which the network supports its users.   
The first three qualities, efficiency (performance), integrity (functionality) and resilience 
(recovery), refer to the sustaining attributes of the network.  When evaluating health from 
an internal perspective, that is, from the perspective of the network, these qualities 
contribute to the survival of the network when stressed or attacked.  Effectiveness applies 
to the description of the network from an external perspective.  Network managers will 
be interested in the work that can be supported and extracted from the network as well.  
The internal and external viewpoints must be balanced when examining the overall health 
of the network.   
The challenge is to translate information about network health into management practice.  
Walters (1986) considers three ways to structure management as an adaptive process.  
The first a “trial-and-error” approach, in which early management decisions are made at 
random and later choices are made from a subset that gives better results.  The second is 
the passive adaptive approach, in which historical data is used to determine a single, best 
model, and decisions are made assuming this model is correct.  The third approach is 
active, adaptive management, where the data currently available are used to construct a 
range of models. A management alternative that provides acceptable short-term 
performance in light of its long-term uncertainty is selected from among these models.  
The management alternative is implemented as an experiment that will be reassessed and 
refined over time. 
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In ecological terms, the health of computer networks does not depend on the 
implementation of specific network topologies.  Health emerges from the structure 
formed by the interconnections and interactions of humans and machines as they 
complete specific tasks.  In fact, low-level management of attacks based on topology 
alone can waste resources when control is misapplied to the areas of the network that 
seem important topologically, but are structurally insignificant. 
A ‘healthy’ system is one that is resistant to cyber attack and is capable of recovery.  It is 
desirable to protect key aspects of the system.  They may be shielded by the system so 
that they resist change when stressed.   These attributes can be assessed using a 
community-oriented approach to ecosystem analysis to assess the emergent properties 
that characterize the system as a whole. 

5.2 Ecological analysis of cyber attack 
In previous work, we discussed epidemiologic metrics (basic reproduction rate, 
generation time) that could be used to assess an ongoing threat.  At times, however, an 
attack may transpire so quickly that there may not be time to respond while it is in 
progress.  For example, a recent description of the Warhol worm (Weaver 2001) has 
extrapolated the complete infection of the Internet in fifteen minutes. 
In this situation, in order to stay ahead of the enemy, it is necessary to project beyond the 
attack itself to its effects.  Given that computer networks are hierarchically organized 
complex systems, the direct and indirect effects of attack on their underlying structure 
can be predicted.  Using these predictions, nodes that are particularly vulnerable can be 
identified. Foreknowledge of these vulnerabilities can guide the implementation of 
defensive measures for nodes with strategic value.   
Vulnerabilities may be selected for attack for several reasons.  One reason is their 
accessibility.  Accessible vulnerabilities present obvious targets to attackers.  More 
sophisticated attackers will target vulnerabilities based upon their importance.  These 
vulnerabilities will provide attackers with the “biggest bang for the buck,” causing 
maximal damage through the direct effects of the attack and through collateral damage 
resulting from the indirect effects of the attack.  Protection of all vulnerabilities is 
impossible.  As one law enforcement official said regarding defense against terrorism, 
“[t]here are a virtually infinite number of possibilities and only a finite number of 
solutions….  So, we have to prioritize our level of activity and preparedness” (King, 
2001).  Our goal in this report is to develop tools to discern the probable intent of a 
sophisticated attacker. 
In this chapter, we assess the effects of direct attacks on cyber systems.  These attacks are 
modeled as inputs to specific system components.  The techniques presented in this report 
form the foundation of a dynamical systems approach to the identification of 
vulnerabilities.  We explore the application of methods used to analyze complex 
ecological communities for information assurance.  We discuss the theoretical 
underpinning of the work and show through examples how the fundamental concepts 
map to cyber ecology.  We discuss the elicitation of community structure and ways in 
which this structure may be exploited for strategic cyber defense. 
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5.3 Qualitative approach to ecosystem analysis 
The qualitative approach to the analysis of ecological communities used in the Cyber 
Ecology Toolkit uses monotonic data to summarize the dynamics of a set of interacting 
variables.  The mathematical foundations of this approach were developed by Lyapunov 
in the 1890’s and developed further through cybernetic analysis (Gardner and Ashby 
1970) and economics (Quirk and Ruppert 1965).  They were introduced to ecology in the 
early 1970’s (May 1972, 1973).  The matrix representation of the community was 
developed by Levins (1968).  Bender et al. (1984) demonstrated the utility of the inverse 
of the community matrix in deriving predictions about the way that a community will 
respond to stress. 
Ecologists view ecosystems in terms of stability.  A stable ecosystem will return to its 
equilibrium state after a disturbance.  This tendency allows us to predict the behavior of 
the system.  Stability provides a backdrop for evolution and adaptation.  Ecosystems also 
exhibit other emergent properties, such as resilience, that affect the rate and manner of 
recovery. 
Modern ecosystem analysis has focused on the quantitative analysis of systems.  This 
type of analysis has allowed detailed observation of parts of ecosystems.  The analysis of 
the dynamics of large systems, until recently, has been computationally intractable.  
Recent technological advances provide sufficient computational power to enable 
qualitative symbolic analysis of ecosystem dynamics.  Qualitative analysis allows us to 
step back and observe the contribution of system structure to the dynamical behavior of 
complex systems in a cost effective and efficient manner.  Qualitative data are more 
easily obtained than quantitative data.  Hypotheses can be rapidly generated, evaluated 
and revised to gain knowledge about network structure and response to stress.  We 
examine cyber systems from this qualitative perspective in this report. 
Natural systems are dominated by negative feedback.  These feedback patterns have 
allowed these systems to persist and evolve over time.  From the viewpoint of systems 
governed by negative feedback, we adopt the following assumptions:  
• cyber systems possess some level of stability (based on their historically observed 

recovery following attack)   
• the persistent threat of attack presents a stable backdrop for adaptation of defenses.    
However, human systems are often dominated by positive feedback.  These systems 
require the constant input of resources to persist.  Defensive systems, such as the 
defensive deployment of countermeasures, are governed by positive feedback.  We 
discuss both types of systems in this chapter of the report.   

5.4 Elicitation of network community structure 
The ecological approach to the analysis of system dynamics begins with 

specification of the ecological community.  Interrelationships among community 
variables are then defined.  The community is evaluated with respect to its stability, and 
predictions are made regarding the effect of input into specific system variables. 
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5.4.1 Definition of a community 
A community is an ecological system consisting of “two or more components that 
interact” (Hall and Fagan 1956).  It exhibits organizational dependence beyond 
aggregativity, providing a basis for emergent properties.  These emergent properties 
allow the system to perform in a manner beyond what is possible by its individual parts.   
A system can be defined by what it is not.  Four conditions defining aggregativity have 
been specified by Wimsatt (1997).   The conditions that must be negated to provide 
evidence of a system are: 
• Intersubstitution – parts of the aggregate may be rearranged or interchanged with 

parts of other aggregates with no effect. 
• Size scaling – parts may be added or deleted with no effect. 
• Decomposition and reaggregation – parts may be decomposed and rearranged with no 

effect. 
• Linearity – cooperative or inhibitory interactions are not present. 
Since a system is more than an aggregate, the failure of any one or more of these 
conditions provides evidence of the existence of a system. 
Collections of variables that exhibit only aggregative qualities cannot achieve emergent 
behavior and are not systems. Computer networks are systems because they do not satisfy 
the conditions for aggregativity.  They fail the criteria for aggregativity in the following 
ways: 
• Inter-substitution – parts in the system may not be rearranged or interchanged with 

parts of other systems.  For example, computers that have been assigned local IP 
addresses cannot function outside a gateway. 

• Size scaling – Addition or deletion of parts may impact a network.  For example, 
removal of an email server will disable the capability to send and receive email. 

• Decomposition – Parts may not be decomposed and rearranged at will.  For example, 
all machines in a network may be disconnected and reconnected in a way that 
precludes proper functioning. 

• Linearity – Cooperative and inhibitory interactions are present.  For example, two 
applications using OLE may cooperate in processing information.  On the other hand, 
two applications may also compete for CPU time when running simultaneously. 

• The failure of computer networks to satisfy the criteria for aggregativity provides a 
basis for exploring their system properties.  One such property is hierarchy.  
Ecosystems possess many forms of hierarchy (O’Neil et al. 1986). 

• Level of organization.  This is the most explicit form of hierarchy, where systems are 
arranged in order of level of organization (e.g., cell, organism, population, 
community). 

• Vertical hierarchy based on rates.  Generally, the higher the organizational level, the 
slower its operating rate.  For example, an individual tree responds to changes in light 
intensity and C02 concentration on a moment-to-moment basis.  The growth of the 
tree integrates these changes and occurs at a slower rate.  The growth of the forest 
integrates the growth of the individual trees and occurs at a yet slower rate. 

• Horizontal hierarchy incorporating groups of functionally similar components.  An 
ecosystem may be modeled as blocks of functionally similar species, or guilds.  It 
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may also be modeled as a set of subsystems, each possessing its own internal 
hierarchical organization. 

It is important to confine the scope of analysis to a manageable depth.  While it may seem 
attractive to incorporate substantial detail in a community analysis, this detail may not be 
illustrative, and in fact may obscure more general behavioral trends.  There is often great 
inconsistency between what we can measure and what we want to measure.  Clear, 
precise measurement of small-scale interactions will not inform higher-level management 
decisions about the community in general.  Community level analysis can assess short-
term trends that are indicative of a more general system breakdown.  It can detect patterns 
of loss that highlight the potential for loss, but cannot pinpoint exactly where the loss will 
occur. 
This concept of ecosystem as ‘organized complexity’ will permit us to abstract the 
structure of communities of interrelated variables to predict the behavior of computer 
networks as they respond to input in the form of external attacks.  Although dynamical 
behavior is a complex mathematical topic, ecologists have found ways of visually 
expressing systems to make analysis intuitive and accessible.  We will discuss these 
visualization and analysis techniques later in this report.  In the next section, we will 
discuss the components of the general, dynamical ecosystem model. 

5.4.2 Specification of a system 
Systems are composed of variables and their interactions. Weiss (1971) described the 
community as “a complex unit in space and time so constituted that its component 
subunits, by ‘systematic’ cooperation, preserve its internal configuration of structure and 
behavior and tend to restore it after non-destructive disturbances.”   These disturbances 
are non-destructive in terms of the community.  Many individuals may die or be injured 
in such a disturbance.  It is non-destructive in the sense that the community continues to 
function.  Following the ecological paradigm, we will refer to complex systems of 
variables and interactions that possess feedback as communities.  We model attacks as 
such non-destructive disturbances. 
In ecology, variables are often taken to be the size of populations or species.  Although 
intuitive, a strict definition of species is controversial.  Regenmortel (1990) developed a 
very general definition of virus species as a “replicating lineage that occupies a specific 
niche”.  For our investigation of community structure in computer networks, we will 
assume an even more general taxonomic definition of variables developed by Sneath and 
Sokal (1973).  In their work on numerical taxonomy, they used the operational taxonomic 
unit (OTU) as the base-level aggregate used in classification.  The requirement for an 
OTU is that it be measurable and it can vary in rank from model to model depending 
upon the level of study.  For example, the OTU might be an individual or group in one 
study or an average output of a process in another.  In cyber ecology, a population-level 
OTU could be the number of packets transmitted or the CPU cycles utilized by a 
particular application.  A process-level OTU could be the tendency of a thread in an 
executing process to return a page fault.   
The concept of community, incorporating a diverse set of mutually distinguishable OTUs 
at multiple hierarchical levels, differs from its common usage in computer networks.  
Kumar et al. (1999) defined communities on the world wide web as groups of content-
creators sharing a common interest.  Using link analysis, they identified web 
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communities by the density of linkages.  Indirect linkages, those web sites referenced by 
pages that point to common web sites but not to each other, demonstrate the richness of 
the linkages from which the communities were drawn. However, these content-creators 
and web sites represent diversity at one level of hierarchy, sharing one type of functional 
behavior.  This type of broad, but shallow organization is referred to by ecologists as a 
guild, and is but one variable of the community.  OTUs within the guild are 
distinguishable by their unique directed core.  The strength of their relationships with 
their consumers can be measured by in-degree, the number of pages that hyperlink to a 
page. 

5.4.3 Variables 
A variable is any component that can be measured and can vary.  A variable may be a 
population (a pride of lions), a process (a hunting pressure), or an abstract quality (market 
value).  The units of measurement may be objective or relative.  For the purposes of our 
analysis, we only require that any two quantities be defined as increasing or decreasing 
with respect to one another, that is, their rates of change are either of the same sign 
(negative or positive) or of opposite sign. 
Variables can be distinguished from one another based on their taxonomic characters.  
These are features that distinguish one variable from another (Michener and Sokal 1957).  
Wang et al (2000) simulated the effect of partial immunization (one, five and ten percent 
immunized) on the propagation of viruses through computer network.  They found that as 
the level of immunity increased, the probability of epidemic decreased and that 
immunization was more effective in strict hierarchical, rather than cluster networks.  
From the standpoint of community, the populations immunized at the one percent level 
are distinguishable from the populations immunized at five and ten percent.  Each one of 
these populations might be taken as an OTU in a community level analysis.  It is 
relatively simple exercise to identify taxonomic units that differ from one another.  
Identification of the manner in which they interact is more difficult.  True community-
level analysis seeks to combine many interconnected taxonomic units in one analysis. 

5.4.4 Links and cycles (loops) 
A link represents the relationship of one variable to another.  It summarizes the sign of 
the derivative of the first order differential equation describing the direction of effect of 
one variable to another.  The possible relationships between any two variables are: 
• Amensal – a variable causes a decrease or diminishment in another; 
• Commensal – a variable causes an increase or augmentation in another; 
• Predator/prey – an interaction between two variables in which a variable, variable a 

(the consumer or predator), causes a decrease or diminishment in another variable, 
variable b (prey), while variable b confers benefit to variable a. In an ecological 
relationship, a predator consumes its prey (loss to prey variable) and derives an 
increase in reproductive potential in return (benefit to predator).  The 
producer/consumer relationship is one form of a predator/prey relationship.  
Producers (plants) derive energy from the sun and process this energy into food items 
for other organisms.  Consumers ingest these food items, deriving benefit to 
themselves while diminishing the plant population.  A self-regulated plant population 
or community may recover.  In computer networks, the concept of predator and prey 
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is counterintuitive.  We will assume that the interrelationships exhibiting benefit/loss 
behaviors are producer/consumer relationships. 

• Interference competition – an interaction in which two variables engage in a 
reciprocal inhibitory relationship.  For example, two plants that compete for the same 
space, where one plant actively precludes the other from occupying that space, are 
engaged in interference competition.  This type of competition is distinguished from 
resource competition, in which two variables consume a common limiting resource 
but do not interact directly.  In a computer network, an application that requires a 
specific configuration that is not compatible with another functionally equivalent 
application, such as Novell and Windows NT server, are engaged in interference 
competition. 

• Mutualism – an interaction in which two variables ‘mutually’ support each other.  In 
an ecosystem, a mutualistic relationship occurs when one species creates a favorable 
environment for another, perhaps through providing shade or vegetative cover, and in 
return another species provides support for the first, perhaps through the return of 
increased nutrients in decomposing by-products.  In a computer network, mutualism 
occurs when two applications provide input into another.  A Microsoft Word 
document that contains embedded Microsoft Excel spreadsheets is the result of a 
mutualistic relationship.   

The relationships within a community are dynamic.  A mutualistic relationship may 
change into a competitive relationship as stresses are applied to the community. 
When consuming a resource, we tend to think in terms of supply and demand instead of 
in terms of relative effects.  In a stable system, there will be sufficient resources (e.g., 
bandwidth) to support consumers of the resource.  Resources and services will be 
sufficient to meet demand.   
Self-loops are drawn as effects that loop back to the same variable.  They indicate self-
regulation and form the foundation for stability.  It is the most basic level of the 
community hierarchy, and the basis upon which all subsequent relationships are built.  
Self-regulation is the ability of a variable to replenish itself.  Each self-regulated variable 
is a stable subsystem within itself.  It derives its regulation through one of several 
mechanisms:  
• Density dependence - The variable is capable of exerting a regulatory effect upon 

itself, so that it will engage in or limit unrestricted growth. It is commonly 
represented with the equation of ‘logistic growth’. 

• Outside resources - The variable regulated by ‘outside’ factors, in essence deriving 
energy from outside the system.  In this case, self-regulation is a convenient short-cut 
to simplify the system down to its components of interest. A stable sub-system may 
be collapsed into a self-regulatory loop.  This allows representation of very complex 
systems in very simple terms. 

The absence of self-regulation on a system variable implies that the variable is 
completely regulated by other variables in the same system.  The hypotheses addressed 
by this configuration are subtle, and we recommend that the novice modeler assign self-
regulation to all variables. This strategy yields a more general model that is less subject to 
misinterpretation.  The default value for self-regulation should be negative.  Positive self-
regulation should be assigned to a variable if it is subject to unregulated growth or 
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decline.  This may be the result of a “harvest,” where a variable is significantly consumed 
without consideration of replacement.   

5.4.5 Signed digraphs 
Biologists, including ecologists, are visually oriented scientists.  For biologists, 
communities are best represented and analyzed using signed digraphs.  These visual 
models, signed directed graphs, or digraphs, are formed by combining a relatively small 
number of components. 
 
• Variables are represented as circles: 

 
• Links are arrows representing positive or negative effects. They can be single or 

pairwise (Table 9). 
Table 9.  Link types 

Type of pair-wise relationship Name Feedback 
 
 

Predator-prey Negative 

 
 

Interference Positive 

 
 

Mutualism Positive 

 
 

Commensalism 0 

 
 

Amensalism 0 

 
A typical system is shown in Figure 26: 
 

 

1
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Figure 26.  A typical ecological system 
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Each link represents an element of the community matrix: 
      
 
     

Aa1
1 

+a12 +a13   

-a21 -a22 -a23   
-a31 -a32 -a33   

    
Each aij element represents the effect to variable i from variable j.  For example, since 
there is no self-regulation for variable 1, the a11 element, the effect to variable 1 from 
variable 1 is zero.  Likewise, in the signed digraph is shown as a line ending in a bubble, 
or a negative effect.  The a21 element of the community matrix, the effect to variable 2 
from variable 1, is therefore negative. 
The community digraph represents the state of the network before it is perturbed.  
Householder et al. (2001) have noted “to be able to detect anomalous behavior, you first 
must be able to characterize what ‘normal’ means in the context of your network.”  The 
community digraph captures the state of the network in the absence of stress.  
Construction of the community digraph is an exercise that illustrates the importance of 
the environment on the network at large. As we attempt to describe causal explanations 
about how a network behaves, we may find it necessary to incorporate variables outside 
of the “traditional” boundaries of the network.  The system level approach developed in 
this report allows the analyst to develop a scenario for a small focused situation and then 
to place it in the context of a larger one.  This approach is different from many IA 
approaches that seek to defend networks using highly developed, specialized mechanical 
and computational methods.  The goal of IA Cyber Ecology is to develop testable 
hypotheses about the behavior of the network as a whole and to use the results of such 
analyses to guide the strategic management and defense of such networks. 

5.4.6 Feedback 
Feedback occurs when variables interact.  The effects of one variable upon another, that 
is, in turn linked to other variables, cause a cascade of effects through the system.  
Feedback occurs when these effects fold back onto each other, forming cycles of effects. 
There are two types of feedback. Negative feedback occurs when the return (feedback) 
signal is in the opposite direct of the input signal. Negative feedback is thermostatic and 
can regulate a system by counteracting input.  In the signed digraph, feedback between 
variables 1 and 2 is obtained by multiplying the signs of the links (+ * -) and is negative.  
The feedback between variables 2 and 3 is positive.  Positive feedback will return a signal 
of the same direction as input; positive feedback is highly destabilizing, although not 
necessarily undesirable in all conditions. 
Mathematically, feedback also occurs at different ‘levels’, equal to the number of 
variables and determined by loops of specific lengths.  The number of levels of feedback 
in the system is determined by the number of variables in the system.  Feedback at each 
level is captured by one coefficient of the characteristic polynomial.  For example, level 
one feedback is the coefficient of the λ2 term.  The feedback at each level for the system 
shown in Figure 26 is: 
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Level 0: -1 
Level 1:  -(a22+a33) 
Level 2:  -(a21a12 +a31a13 –a23a32) 
Level 3: - (+a22a13a31 + a33a12a21 - a12a23a31 - a31a23a12) 
 
Negative and positive feedback systems 
Feedback forms the basis for predictability in a complex dynamic system.  A system, in 
which progressively higher levels of hierarchy exhibit decreasing levels of negative 
feedback, is stable.  System behavior in stable communities can be predicted. 
Ecological analysis, in general, has focused on the role of negative feedback in creating 
stable communities.  This is the general pattern in nature.  Systems dominated by positive 
feedback are not stable and therefore do not persist over long periods of time.  Positive 
feedback systems do possess many desirable attributes, however.  While a negative 
feedback system will store capital to sustain itself in times of stress, a positive feedback 
system will immediately expend the resources it takes in, translating them into growth.  
The effects of change in positive feedback systems can also be predicted, but on a short-
term basis, since the survival of such a system is not assured by its structure. 
The paradox of stability is that a stable network is very good at standing still.  In order to 
grow as a whole, a system must be able to assimilate positive feedback and to translate it 
into growth.  However, as long as the system is dominated by low-level positive feedback 
cycles, it is very vulnerable.  A very minor disturbance can send it into a tailspin. 
We offer the following guidelines for discerning positive and negative feedback systems.  
Positive feedback systems: 
• Contain at least one positive self-effect.  This means that at least one variable behaves 

in a self-enhancing manner; and 
• Receive a constant input of resources to sustain growth.  The significant insertion of 

resources is a requirement for the survival of the system because the system cannot 
draw sufficient capital using its inherent extraction processes.  

Many human-designed systems tend toward positive feedback because their intent is to 
benefit from an increasing resource.  When faced with a decreasing level of resource, the 
system will collapse and disappear. By definition, such a system would also disappear 
even in the presence of a constant (as opposed to an increasing) level of input.  For 
example, agroecosystems that are managed intensively to provide food and fiber for 
human populations are often not stable.  They require the application of allochthonous 
resources, such as petrochemical fertilizers and are dominated by positive feedback.  
Similarly, cyber systems that require the continuous input of resources, such as those 
required to maintain defensive countermeasures, are dominated by positive feedback.  
These systems are discussed in section 5.7 of this report. 
Negative feedback systems are discussed in section 5.6 of this report.  These systems: 
• Contain at least one negative self-effect.  This low-level negative feedback provides a 

mechanism for the system to conserve resources.   
• Are self-sustaining.  They can persist solely on resources derived from the 

environment using extraction processes contained in the system.  While such systems 
are better able to withstand an interruption in resource flow, they do not grow. 

Many systems will consist of a mixture of positive and negative low-level feedback, that 
is, a mixture of positive and negative self-effect loops.  When such a system grows in 



 

95 

response to a constant influx of external capital, we say it is dominated by positive 
feedback or is a positive feedback system.  These systems are not stable and will collapse 
when the insertion of external resources is interrupted.  The theory of positive feedback 
systems has not been fully explored and is not completely understood.  When a system is 
capable of conserving capital extracted from the environment, that is, it possesses strong 
low-level negative feedback, we say it is dominated by negative feedback, or is a 
negative feedback system. 
Feedback at higher levels also impacts system behavior.  Stable systems possess negative 
feedback at low levels.  High-level positive feedback loops, that is, positive feedback 
loops that involve many variables, are also potentially destabilizing.  These long loops 
are generally introduced when systems are managed.  They introduce time delays so that 
the management of a process may take longer than those in the unmanaged system.  
When the variables in a system are unable to adjust, the system becomes unstable. 
Complex systems may be hierarchically constructed so that the variables are actually 
small systems in themselves.  When high-level positive feedback is present that allows 
the system to grow, these smaller subsystems that are dominated by negative feedback, 
can provide protection against the total collapse.  When the level of resources available to 
the system decreases so that growth cannot be maintained, the system structure may 
break apart.  However, subsystems with negative feedback will persist and may be 
‘reconnected’ when the opportunity arises again. 

5.4.7 Emergence of the graph as a succinct representation of mechanism and 
causality 

The evaluation of complex dynamic systems has benefited from recent advances in 
graphical analysis.  Judea Pearl (1997) has referred to the development of graphs in 
modeling causal relationships as a fundamental advance of the past decade.  In ecology, 
in particular, graphical representations of complex ecosystems have made it possible for 
non-mathematicians to undertake mathematical analyses of these systems.  Biologists, 
including ecologists, rely heavily on visual analysis in their respective domains, and the 
ability to depict complicated systems as a collection of interconnected nodes and arcs 
provides a visually accessible and intuitive way to summarize a wealth of information. 
In the structural approach to the analysis of complex dynamic systems undertaken in this 
project, graphs provide a “fundamental notational system for concepts and relationships 
that are not easily expressed in any mathematical language (e.g., equations or 
probabilities) other than graphs” (Pearl 1997).  They fill a linguistic gap and provide a 
convenient shorthand for expressing the manner in which variables in these systems are 
interconnected.  Equally important are absent interconnections that indicate lack of direct 
interaction between variables. 

5.4.8 Model structure 
In this section, we review some basic modeling considerations.  The model components 
described in this section form the basis of more complex performance-based and 
assurance-based models discussed in later sections of this report.   
The fundamental relationship in the ecological models is the producer-consumer 
relationship, where one variable produces input for another with concomitant negative 
feedback.  This relationship can be described in information systems as a transformation 
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of information.  The transformative process through which raw data is converted into 
useful information was described in the context of the information battlespace by Alberts 
et al. (1999):   
 

“The key to understanding the roles of and the relationships among 
battlespace entities is to focus on processes that turn raw data into 
information, and information into knowledge….  Data are individual facts, 
measurements, or observations which may or may not be sufficient to 
make a particular decision.  Information is obtained when elements of data 
are assembled, reconciled, fused, and placed in an operational context.  
Knowledge is derived from being able to use information to construct and 
use an explanatory model based upon an understanding of the situation or 
phenomenon.  Such a model allows us to forecast future states, predict 
outcomes, and also contributes to our ability to control the situation – or to 
be proactive rather than reactive.  This is, of course, a primary goal of 
command and control.” 

 
In the ecosystem approach to understanding system dynamics, indirect effects are 
expressed through feedback.  Transmission along feedback loops allows a system’s 
response to input to be distributed throughout the system.  The producer-consumer 
relationship is a simple feedback loop.  Consider two variables: useful data and 
information.  As more useful data are produced, more information can be assembled.  
The link from data to information is positive because they either both increase or both 
decrease.  Feedback is formed by the returning effect from information to useful data.  As 
the amount of information increases, the amount of useful data decreases because more 
of the data will be redundant.  In the feedback relationship, the variables are linked in an 
inverse relationship that is summarized by a negative link.  The signed digraph for these 
two variables is shown in Figure 27. 
 

 
information 

useful 
data 

 
Figure 27.  Useful data/information producer/consumer relationship 

 
 
The same pattern of producer and consumer is evident in other models.  Consider the 
relationship between available bandwidth and IIS8 performance in the performance-based 
model shown in Figure 28.  The relationship to IIS performance from available 

                                                 
8 Internet Information Services, a Microsoft Windows-based Web server 
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bandwidth is positive.  This means that as the amount of available bandwidth increases, 
the IIS performance improves (within some bound; the relationship is not infinite).  
Conversely, decreased available bandwidth reduces the quality of IIS performance.  
Since the relationships are linked in this manner, the relationship to quality of IIS 
performance from available bandwidth is represented by a positive link.  In the feedback 
relationship, improved IIS performance reduces the amount of available bandwidth, 
represented by a negative link. 

 IIS  
performance 

available 
bandwidth 

 
Figure 28.  Available bandwidth/IIS performance producer/consumer relationship 

 
 
The pattern is repeated in the assurance-based model in the relationship between 
available sysadmin time and level of assurance shown in Figure 29.  As more system 
administrator time becomes available, the level of assurance increases.  As less system 
administrator time is available the level of assurance decreases.  The variables are linked 
in tandem as they rise and fall and the relationship to level of assurance from available 
sysadmin time is represented by a positive link.  In the feedback relationship, as the level 
of assurance decreases, available sysadmin time decreases, since more time is devoted to 
maintaining the high level of assurance.  This inverse relationship is represented by a 
negative link.   

 level of 
assurance 

available 
sysadmin time

 
Figure 29.  Available sysadmin time/level of assurance producer/consumer relationship 

 
In addition to the producer-consumer relationship, other relationships occur commonly in 
ecosystems.  Reciprocal relationships may also be competitive or mutualistic.  In a 
competitive relationship, variables are linked to each other with negative links.  They are 
inversely related so that an increase in one variable will cause a decrease in the level of 
the variable to which it is linked.  In a mutualistic relationship, variables enhance each 
other so that an increase in one causes an increase in another.  Relationships need not be 
reciprocal and one-way arrows are permissible. 
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In Figures 27 and 28, a negative self-loop is shown on the producer variable.  This loop 
indicates that the growth of the producer variable is internally or self-regulated.  The 
producer variable exists in a limited quantity and its growth is density dependent. The 
response behaves in a thermostatic manner.  When the level is low, more resource is 
made available to achieve a more or less constant level in the system, and vice-versa.  In 
the useful data/information model, the amount of useful data grows quickly when there 
are few data and more slowly when there are many.  (Although the total amount of data 
may continue to increase without bound, the amount of useful data, that is, data that can 
be used to synthesize new information, does not).   In the available bandwidth/IIS 
performance model, the amount of available bandwidth increases quickly when the 
pipeline is empty and more slowly when there is heavy utilization of bandwidth.   
In addition to negative self-effect, positive self-effects also occur in the models.  In the 
available sysadmin time/level of assurance model shown in Figure 29, a positive self-
loop on available sysadmin time is shown.  This link indicates that the amount of 
available sysadmin time present in the system is ‘harvested’ (i.e., removed at a rate 
independent of community feedback).  As available sysadmin time is consumed, the 
variable becomes less likely to be able to restore itself.  For example, consider system 
administrator activity during a viral outbreak.  As available sysadmin time is devoted to 
combating the outbreak, less time is available to engage in maintenance activities that 
optimize system administrator productivity, creating further problems that consume more 
system administrator time.  The effect is self-amplifying.  The positive self-effect loop 
captures this vicious cycle. 

5.4.9 Stability criteria 
Stability is the ability to recover from a disturbance.  Mathematical criteria are used 

to assess system stability.  In this report, we describe criteria that can be used to address 
qualitative stability using monotonic data (data that are either continuously increasing or 
decreasing). In other words, we only need to know the direction of the effect from one 
variable to another (i.e., the sign of the derivative).  By assembling these data into a 
community matrix and applying the Routh-Hurwitz criteria for stability, we can 
determine whether this qualitatively specified system will return to its pre-disturbance 
equilibrium state following the disturbance. 
Eigenvalues can be used to describe system behavior (Jorgensen 2000). A system is 
stable if all its eigenvalues (roots of the characteristic polynomial) have a negative real 
component.  Eigenvalues cannot always be evaluated directly, and the coefficients of the 
characteristic polynomial can be used to determine if they can exist.  There are two 
traditional criteria for stability, often called the Routh-Hurwitz criteria. Both have 
intuitive interpretations: 
• all coefficients of characteristic polynomial must be of the same sign.  The 

coefficients represent the different levels of feedback mentioned above. 
• Hurwitz determinants must all be positive.  The Hurwitz determinants are formed 

using the coefficients of the characteristic polynomial.  This operation determines the 
relationships of feedback levels to each other, ensuring that lower levels of feedback 
are stronger than upper levels. 
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5.4.10 Eigenvalue structure 
The behavior of the community following perturbation is expressed in its eigenvalues.  
Eigenvalues may contain real and complex parts, indicating whether or not a community 
will recover from perturbation and if it will, whether or not the return will follow an 
asymptotic or oscillatory path. 
  
Real Part Imaginary Part Behavior 
<0 0 stable, asymptotic recovery 
<0 not 0 stable, damped oscillatory 

recovery 
0 0 neutral stability, 

displacement from 
equilibrium persists     

0 not 0 neutral, permanent 
oscillations 

>0 0 unstable, movement in 
direction of disturbance 

>0 not 0 unstable, undamped 
increasing oscillations 

 
In general, hierarchical structures composed of straight chains exhibit the highest level of 
oscillatory behavior as they recover.  This behavior creates a vulnerability, since a second 
perturbation coinciding with a trough in the oscillatory cycle can disturb the system to 
such an extent that recovery is impossible.  
We can express the system shown in Figure 26 qualitatively, in matrix form. 
 

  0  1  1   
-1 -1 -1   
-1 -1 -1   

 
This matrix quantitatively describes the structure shown in Figure 26.  The symbolic 
quantities have been replaced with 1 (for positive values) and –1 (for negative values).  
Absent links are represented by the value, 0. 
The characteristic polynomial for this system is –λ3-2λ2-2λ.  Its solutions, or eigenvalues, 
are 0, -1+i, and -1-i.   This system will return to equilibrium in a damped oscillatory 
manner. 

While the structure of simple systems is easily elucidated, larger systems are more 
problematic.  As systems become more complex, their stability becomes dependent the 
growing number of interconnections within the system.  The conditions under which 
stability can occur become more numerous, but less likely.  We operate under the 
assumption that some stability is possible in any system.  Instead of determining whether 
or not the system is stable, we evaluate tendency of the system to behave in a stable 
manner.  A system will tend to respond in a stable manner if feedback at all levels is 
negative and if feedback at low levels is stronger than feedback at higher levels. 
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5.5 Exploitation of network community structure 

5.5.1 Qualitative expression of a community 
Measurement of interactions in any community is problematic.  Aside from the sheer 
volume of observations that must be collected and processed, it is not always clear that 
the quality measured captures the property of interest.  Often, however, analysts possess a 
general idea of the properties of interest and can elucidate the direction of effect of one 
variable with respect to another.  For example, although the rate of decrease in failed 
messages during a DDoS attack may be difficult to measure, the fact that a decrease has 
occurred is often readily apparent.  These monotonic relationships that represent the 
direction of change of one variable with respect to another are sufficient to elucidate the 
underlying structure of a community. 

5.5.2 Prediction 
When a complex system (community) possesses a local stable equilibrium point, it will 
return to this level following a minor perturbation (homeostasis).  This provides us with a 
basis on which to make predictions about community behavior.  The stability assumption 
may be relaxed to the assumption that the community possesses a stable trajectory 
(homeorhesis). Under this assumption, the relative magnitudes of the variables and their 
interactions are sufficient for prediction. 
Predictions are derived from the inverse of the negative community matrix.  The adjoint 
(the product of the inverse and determinant) of the matrix provides the same qualitative 
information, assuming that the first Routh-Hurwitz criterion is satisfied (i.e. negative 
feedback at all levels).   By convention, a permanent input (or press) is positive (the signs 
of the elements of the adjoint are reversed for negative change) and the indirect effects 
(elements of the adjoint or inverse) are read down the column of the site of input. For the 
above matrix, the predictions are: 
 

(Input into variable 1)   
- 0 0 
0 + - 
0 - +
   

 
The counterintuitive nature of the results can be seen from the top left element.  In this 
case, a positive input to variable (1) will result in its decrease and have potentially little 
impact on the rest of the system.  The zeros represent canceling cycles, and in actuality 
change may depend on actual values.   However, it is a rigorous conclusion that, for this 
input, there will be little significant impact other than at the site of input (1). 
The prediction matrix shows the results of stress as an input to one variable as it is 
manifested throughout the system as a whole.  Predictions are valuable because they 
elucidate the indirect targets of an attack.  An attack on one specific variable may merely 
be a steppingstone to a further objective.  As attackers become more sophisticated, they 
will acquire the knowledge and skills necessary to exploit system structure to achieve a 
desired disruption. 
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A system dominated by positive feedback will not possess a stable equilibrium.  
Nonetheless, the predictions may still apply.  Predicting the effect of positive feedback 
simply requires a reversal of normal predictions.  This fact arises from the mathematical 
consideration that positive feedback is expressed as a positive determinant, which is the 
denominator of predictions.  By convention, this is generally assumed to be negative (i.e., 
‘stable’); a positive feedback simply means a positive determinant. 

5.5.3 Purposeful perturbation of the community to obtain information about 
structure 

Ecological experiments elucidate structure by observing community response following 
perturbation, a selective alteration of the density of one or more members of the 
community.  There are two types of perturbations: pulse and press.  A pulse perturbation 
is a more or less instantaneous applied to a variable.  Community response is observed as 
the community relaxes back to its equilibrium state.  A press perturbation is a more 
sustained alteration.  One or more variables may be modified or eliminated and the 
system is observed as the unperturbed variables achieve a new equilibrium state.  Pulse 
experiments yield information about direct interactions.  The information produced by 
press experiments results from the combination of direct and indirect effects as the effects 
of the perturbation manifest throughout the community.  System recovery following a 
short duration ping-of-death is fundamentally and structurally different from system 
response to a prolonged ping-of-death attack to which the community must adapt to 
survive. 
Each element in the prediction matrix is derived from the sum of the numbers of negative 
and countervailing positive feedback loops.  When there are more positive than negative 
loops, the value is one.  When negative loops outnumber positive loops the value in the 
prediction matrix is –1.  When the numbers of positive and negative loops are perfectly 
balanced, the value is 0.  As systems grow in size, the number of feedback loops becomes 
very large.  A positive value due to an imbalance of one loop becomes far less significant 
than a positive value due to many more positive than negative loops.  Weighted 
predictions (Dambacher 2001) describe the contribution of structure to each element of 
the prediction matrix by capturing the strength of imbalance, or ambiguity.  Each element 
in the weighted prediction matrix has been normalized with respect to the total number of 
feedback loops within the system.  A value of one in the weighted prediction matrix 
means that the prediction is unambiguous structurally; all contributing feedback loops are 
or the same sign.  As values decrease in magnitude, the prediction becomes more 
ambiguous and is formed by both positive and negative loops, with the sign of the 
prediction indicating whether positive or negative loops are more numerous.   

5.5.4 Analyzing cyber ecosystems using the Cyber Ecology Toolkit 
We summarize the steps in constructing and analyzing a signed digraph of a dynamic 
system using the simulation tool accompanying this report in Table 10. 
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Table 10.  Constructing and analyzing a signed digraph of a dynamic system 

Constructing and Analyzing a Signed Digraph of a Dynamic System 
Step 1:  Select variables 
Set level of focus.  The variables should be roughly of the same order of importance or 
magnitude relative to the situation being modeled. 
Analogy:  Even though elephants are much bigger than ants, they should both be included 
in the same model if they contribute important effects.  For example, both affect soil 
friability.  To exclude one would not give a complete picture of the soil disturbance. 
Step 2:  Lay out the variables in a logical order 
The power of the signed digraph is that it allows the visual tracing of effects through the 
system.  Lay out the variables in a way that makes sense.  They can be arranged in the 
order in which they appear in time or their physical proximity.  As understanding 
increases, the order of the variables may be changed. 
Step 3:  Set self-effects 
Negative self-effects form the backbone of a stable system. 
If a variable does not have a self-effect, this means that its level is completely determined 
by the inputs feeding into it from other variables. 
Analogy:  In biological systems, the ultimate source of energy is the sun, but the sun is 
not explicitly included in all models.  In models where plants are modeled as the base 
resource, they are generally assigned a negative self-effect, representing exogenous input 
from the sun.  Similarly, in a cyber system model, bandwidth may be modeled as the base 
resource for a network.  Models with no basal self-regulation cannot be stable.  This 
means that they will persist as long as conditions are favorable and will not recover 
autonomously to their pre-disturbance state.  This does not mean that recovery is 
impossible.  It does mean that recovery must be completely engineered.  The system 
possesses no stable equilibrium. 
Step 4: Set connections among variables 
The connections between variables show whether or not the effects to a variable from 
another enhance or inhibit growth.  Mathematically, the links in the signed digraph 
represent the partial derivatives of the differential equations describing the dynamic 
relationships, or links, between the variables.  In qualitative analysis, we are concerned 
with the signs of the links.  This allows generation of rapid predictions with minimal 
data.  The digraph allows us to depict these relationships visually and to construct 
complicated systems using simple rules. 
Is there feedback?  When the effect of a variable’s behavior returns to affect its own level 
through another variable or other variables, feedback is present in the system. 
Analogy:  The fundamental biological feedback loop is the predator-prey relationship.  
Lions eat gazelles.  Since lions reduce the number of gazelles by killing them, the effect 
to gazelles from lions is negative.  However, gazelles provide nutrition for lions so that 
they can reproduce.  The link to lions from gazelles is positive.  Thus the feedback from 
lions, through gazelles back to lions, is negative, the product of the signs of these links.  
Any relationship in which the product of one variable is depleted and consumed for the 
benefit of another can be modeled as a predator-prey, or producer-consumer relationship. 
Other possible feedback relationships between two variables are mutualism and 
competition.  In a mutualistic relationship, two variables mutually enhance each other.  In 
a competitive relationship, two variables compete for resources so that each limits the 
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other’s growth. 
Example:  System administrators must often maintain multiple operating systems.  The 
systems compete for ‘cognitive real estate’.  That is, the system administrators cannot 
focus on one operating system without excluding the others and they demand time and 
attention synchronously.  These operating systems are in competition. 
The relationship does not necessarily need to reflect direct feedback.  One-way 
relationships are also common and may be depicted as one-way links in the digraph. 
IMPORTANT:  Be sure to limit your digraph to first order, or direct, effects.  The signed 
digraph of the community should contain only the direct effects of one variable upon 
another.  Indirect effects that are transmitted through other variables are captured by the 
mathematical analysis of the system. 
Step 5: Derive the community matrix. 
The community matrix is a numerical representation of the signed digraph.  Each element 
(aij -entry) in the matrix is read as the effect to variable i from variable j.  While it is 
possible to generate this matrix manually, it is not recommended.  Experience has shown 
that this transcription usually contains operator errors.  To generate the community 
matrix using a computer, transcribe the signed digraph into the digraph editor, 
PowerPlay, and then use the show matrix command in the Options menu. 
Step 6.  Formulate predictions 
Predictions reveal the result of increasing or decreasing the level of one variable on the 
other variables in the system as the system recovers to its pre-perturbation equilibrium 
state.  The predictions show the indirect effects of change on the system. (Recall that the 
signed digraph described direct effects only).  The prediction matrix is the inverse9 of the 
community matrix generated in Step 5.  The Toolkit software will generate a prediction 
matrix for you. 
To read the prediction matrix for a negative feedback system, read across the columns to 
determine the site of input.  Then read down the column to find the predicted direction of 
response for a particular variable.  By convention, the prediction matrix gives the results, 
in terms of changes in ‘abundance’ of positive input into variables only.  To read the 
results of negative input from the table, reverse the signs in the prediction table. 
Note that the predictions will be reversed for a positive feedback system.  Predictions 
may be negative (“-“ or decrease), positive (“+” or increase) or null (“0” no effect).  The 
effects of multiple inputs may be read from the prediction table only when the inputs are 
of like sign. 
Step 7.  Evaluate weights of predictions 
Some qualitative predictions are more structurally ambiguous than others.  The sum of 
loops contributing to a response can be positive, negative, or null.  Predictions are formed 
by evaluating subsets of loops in any given system.  When all the loops in a subset are all 
of a given sign, say positive, then we can be reasonably confident that the final prediction 
will be positive as well.  Often, however, predictions are formed by combinations of 
positive and negative loops.  When half the loops contributing to a prediction are positive 

                                                 
9 The change in species population in a complex system is determined by the matrix equation N = A-1K, 
where N is the number of individuals in the population at equilibrium.  K is the number of individuals that 
can be supported by the environment, and is presumed to be a constant.  When the system is perturbed, 
elements of A change.  The effect of this change on the number of individuals is determined by the inverse 
of the prediction matrix, -A-1 (Ricklefs, 1990) 
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and the other half are negative, we are less confident about the final direction of the 
prediction.  In this case, the final direction of the effect in the real-world system will be 
determined not by structure, but by the magnitudes of the interrelationships. 
The Toolkit contains a facility for evaluating the structural ambiguity of the qualitative 
predictions.  Research using simulations has shown that we can be confident in 
qualitative predictions of weight 0.5 or greater. 
Step 8.  Simulate to estimate likelihood of stability 
Nearly every system possesses some locus of stability.  In some, it may be vanishingly 
small.  Others possess a broad plateau of stability.  How can we discern among these?  
The Toolkit contain a simulation facility that will generate 5,000 numerical instantiations 
of the system, evaluate them for stability, and display the results.  Systems that are prone 
to instability will return few stable simulation models, while those that are more stable 
will return a greater number. 
 

5.6 Examples of negative feedback systems 
We present four examples of negative feedback systems.  These systems are potentially 
stable when negative low-level feedback is sufficiently strong.  The examples discussed 
are: 
• Logistics system scenario.  This system describes a process contained in a 

hypothetical logistics system.  The underlying mathematics of the analysis are shown 
in detail.  The structure of the system is modified with both increased low-level and 
high-level feedback to illustrate the resulting changes in stability. 

• Propheteer Strawman Scenario.  This example contains variables at a higher level of 
aggregation that those in the previous example.  It is a more general analysis designed 
to show how a community level ecological analysis might be performed to learn 
about the general tendencies of a large system. 

• Code Red.  This is LAN-level model that illustrates the effects of resource 
competition in a negative feedback system. 

• CPU-centric model for availability.  This is machine-level model designed to show 
the effects of the release of the Morris worm on the machine-level work. 

5.6.1 Logistics system scenario 
In this section, we present a detailed community-level ecological analysis.  We 
constructed a model of a hypothetical logistics system and modeled it in the form of the 
general process shown in Figure 30. We formulated a possible instantiation of this 
process (Figure 31).  We discuss the mathematical equations driving the analysis and then 
show how the Cyber Ecology Toolkit allows the rapid, comparative analysis of this 
system and variations. 
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Figure 30.  General tasks in the logistics system scenario 

 

The signed digraph of the system depicted linearly in terms of task order is shown in 
Figure 31.  The variables are: 
• Number of items in central database; 
• Number of requests to central database; 
• WAN availability; 
• Number of items in the local database; 
• Number of logistics orders; 
• Number of unfulfilled requests. 

 

# requests # logistics 
orders 

# orders in 
local DB 

# requests 
to central 

DB 

WAN 

# orders in 
central DB

 
Figure 31.  Process-based arrangement of variables in the logistics system scenario 

 

 
An alternate, more ‘biological’ ordering of these variables is shown in Figure 32. 
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Figure 32.  ‘Biological’ arrangement of variables in the logistics system scenario 

 
 
The system is relatively simple.  The requisitioning process adds a long circuitous path 
counterbalanced by a short link back to the WAN.  The simple two variable system is 
complicated by a link that passes through four intermittent variables (Figure 33).   This 
means that even though the system seems complex because it contains six variables, it is 
relatively simple with respect to the number of links.   
The only exogenous input into this system is through the WAN.  This means that the 
entire system is affected by the availability of this resource.  One consequence of this is 
that when the availability of WAN is reduced without a concomitant reduction in the 
remaining variables, the system will ‘thrash’.  This is directly analogous to application-
level thrashing that results when an application is allocated insufficient memory. 
 



 

107 

# requests 
(R4)

# logistics 
orders 
(L5)

# items in 
DB (I6)

WAN 
(W3)

# requests 
to central
DB (B2)

# items in 
central DB 

(M1)
# items in 
central DB

# requests
# requests 

(R4)

# logistics 
orders 
(L5)

# items in 
DB (I6)

WAN 
(W3)

# requests 
to central
DB (B2)

# items in 
central DB 

(M1)
# items in 
central DB

# requests

# items in 
central DB

# requests

 
Figure 33.  Long and short paths connecting number of requisitions and number of items in 

the central database 

 
Mathematical Analysis 
The work performed by the logistics ecosystem can be represented mathematically by the 
following sets of differential equations: 
Variables are identified by index letter: 
• Number of items in central DB  A 
• Number of requests to central DB B 
• WAN availability    W 
• Number of items in local DB  I 
• Number of logistics orders  L 
• Number of requests   R 
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Links identified by index numbers as an interaction term aij (to i from j). 

;1312 AWaABa
dt
dA

+=  

 

;2623 BIaBWa
dt
dB

+=  

 

);( 33333231 WaaWBWaAWa
dt

dW
−+−−=  

 

;4541 LRaARa
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−−=  

 

.6154 AIaLIa
dt
dL
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The community matrix, A, is given by the Jacobian: 
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A
. 

 
Completion of this matrix with quantitative data may not be realistically feasible.  By the 
time data are collected, the significance of any analytical findings may have passed.  In 
order to expedite analysis and take advantage of a wider range of data, we populate the 
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matrix with qualitative data.  We assume that the relationships are monotonically 
increasing or decreasing over the model represented by the matrix. (If they are not and if 
the model is believed to be stable (i.e., it has persisted for some period of time), we may 
either have an incomplete system specification or data that are too detailed.)  We 
populate the community matrix with values of 1 (monotonically increasing in value), -1 
(monotonically decreasing in value) or 0 (no change in value).  These values allow us to 
compute many attributes of the community quickly and with little data. 
The general form of the community matrix from the digraph is: 
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From the community digraph, the qualitatively specified community matrix for the 
logistics ecosystem is: 
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To assess the stability of the system, we first take the characteristic polynomial of the 
community matrix A: 
 
Characteristic polynomial = λ 6  +  λ 5 + 3λ 4 +3λ 3 + 2λ 2 + 3λ. 
 
The characteristic polynomial is of the form a0λ n  +  a1λ n-1 + a2λ n-2 +… + a n-1λ + an, 
where a0 is always positive.  
For the system to be stable, feedback at all levels must be negative and low-level 
feedback must be greater than high-level feedback.  To pass the first criterion, all 
coefficients of the characteristic polynomial must be of the same sign. The second 
criterion is assessed by the signs of the Hurwitz determinants.  In a stable system, 
alternate Hurwitz determinants up to order n will be positive.  The Hurwitz determinants 
are formed by the coefficients of the characteristic polynomial in the form: 
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Usually, complex systems are stable for certain values and unstable for others.  Any 
qualitatively specified system with feedback loops of length greater than 2 will at best be 
conditionally stable.  That is, the only globally stable system of more than two variables 
is a straight chain system with self-regulation on one or more variables.  Conditional 
stability statements can be assessed by examining the symbolic form of the characteristic 
polynomial.  Conditionally stable system contain more high-level feedback relative to 
low-level feedback, a characteristic often attributable to over regulation. 
In general, systems that pass the first Routh-Hurwitz criterion possess a wide range of 
stability.  Those that pass the first criterion, but fail the second are conditionally stable.  
In these systems, the relative, quantitative values of the variables will determine the 
stability of the system.  Those that fail both the first and second criterion contain inherent 
structural flaws that are inconducive to stability. 
The Cyber Ecology Toolkit uses simulation to determine the relative stability of a given 
system.  The program randomly generates 5,000 models and tests each model using the 
Routh-Hurwitz criteria.  Output is summarized as the number that is:  
• likely to be stable (pass first and second criteria); 
• manageable (pass first, fail second criterion); 
• likely to be unstable (fail first criterion). 
In general, when 50 percent or more of the simulated models are likely to be unstable and 
the system is known to be a negative feedback system, it should be viewed with extreme 
caution. 
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For models with 50 percent or more of simulated models likely to be stable and/or 
manageable, we can assess the predicted behavior of the system to stress.  The 
predictions for a qualitatively specified system reveal the direction of effect after the 
system returns to equilibrium.  Predictions are obtained from the adjoint of the 
community matrix A.  The adjoint is the matrix formed by the cofactors of A.  Each 
element of the prediction matrix contains the response of species i to a permanent change 
in the growth rate associated with species j, that is, each column of the adjoint matrix 
shows the direction of change in each variable given a positive change (increase) in the 
variable associated with that column. 
The effects given by the adjoint matrix are not scaled.  In order to determine the relative 
weight of each prediction relative to the number of feedback loops in the system, we 
divide the adjoint matrix by the permanent.  The permanent matrix gives the absolute 
feedback associated with each cofactor in the adjoint matrix.  The weighted prediction 
matrix describes the direction and reliability (in terms of structural loops) of input into 
the variable in the ith column on the variable in the jth row.  The weighted prediction 
matrix for the logistics ecosystem is shown below: 
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The weighted matrix describes the structural contributions of input into a column variable 
on the rows representing the members of the community.  It summarizes the 
consequences of both direct and indirect effects.  All elements of the weighted prediction 
matrix are unity.  This means that all the relationships except those with values of zero 
are equally vulnerable in terms of the way the logistics ecosystem is constructed. 
 
Baseline system 
The signed digraph for the baseline system is shown in Figure 34. 
 
 



 

112 

 

# requests 

# logistics 
orders 

# items in DB 

WAN 

# requests to 
central DB 

# items in 
central DB 

I6 A1 

L5 B2

R4 W3 

 
Figure 34.  Signed digraph for the baseline logistics system 

 
 
The results of the simulations are: 
 
Total number of simulations:       5000 
Likely stable:        78 
Manageable:    2381  
Likely unstable:   2541 

 

These show that the system has a reasonable range of stability among the 5000 
quantitatively specified models simulated. 
 
The adjoint matrix is: 
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The weighted prediction matrix is: 

The weighted predictions matrix contains no values less than one.  This means that all 
nodes are equally vulnerable. 

In summary, the baseline system does not show a strong tendency to either stability 
or instability.  It will be moderately manageable following an attack.  All links are 
equally vulnerable.  The system’s structure does not offer protection to certain nodes nor 
does in confer significant recovery capabilities. 
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Logistic system modified to include increased low-level feedback 
The baseline logistics system was modified to contain increased low-level feedback 
(Figure 35).   
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Figure 35.  Signed digraph for the baseline logistics system modified with low-level feedback 

 
This means that more decision points have been inserted into the system.  There are now 
more points in the system under local control, where control of the process is 
relinquished and transferred to the next variable.  One introduced point of local control in 
the modified system, for example, occurs at Node 5, number of items in the local 
database.  This means that logistics orders are acknowledged when they are received into 
the local database and that the control of the order is relinquished to the database.  The 
requisitioner no longer has control over the process.  Rather than one long process with 
one entry point and one end point, the process has been divided into several sub-
processes. The modified system is shown in Figure 35. 
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The community matrix for this system is: 

 
The results of the simulations are: 
Total number of simulations:       5000 
Likely stable:    1370 
Manageable:    2527 
Likely unstable:   1103 
 
 These results show that this system has a much broader range of stable behavior in simulations than the 
baseline model. 
 
The adjoint matrix is: 
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The weighted prediction matrix is: 
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The richer structure of this system makes some links less vulnerable, in the sense that 
they contribute less to the overall structure of the system.  Attacks on the links with 
weighted prediction values of .33 will be less likely to transmit effects through the 
system.  However, although the system is more resilient than the baseline with respect to 
vulnerability, it will display highly oscillatory behavior as it recovers from an attack.  
This can be surmised by inspection of the eigenvalues (-0.129 + 1.74i, 0.034 + 1.26i, -
0.400 + .2i) that all contain complex parts. 

In summary, the baseline system modified to contain increased low-level feedback 
shows an increased tendency to stable behavior.  However, the system will oscillate.  
This means that delays in processing are an inherent attribute of the recovery process for 
this system.  Weighted feedback values of .33 show areas where system structure may 
mitigate and deflect the effects of an attack.  Structural patterns in the system make some 
variables less vulnerable than others. 

 
Logistic system modified to include increased high-level feedback 
The baseline system was then modified to incorporate greater high-level feedback.  The 
modified system is shown in Figure 36. 
In this system, high-level feedback reduces the number of decision points in the system.  
An order may traverse long paths unacknowledged and uncorrected.  The intermittent 
variables along a path do not exert control over the process.  This means that when the 
process is interrupted there are few opportunities for the system to adapt.  Orders will 
continue to be submitted, unacknowledged, even though the system is broken.  There is 
little low-level feedback (few short loops) to enable autonomous corrections to the 
number of logistics orders the system can accommodate. 
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Figure 36.  Signed digraph for the baseline logistics system modified with high-level 

feedback 
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The community matrix for this system is: 

The results of the simulations are: 
 
Total number of simulations:       5000 
Likely stable:          0 
Manageable:    1273  
Likely unstable:   3727 
 
These results show that this system is highly unstable.  We have little reason to believe 
that its structure can support return to equilibrium following an attack.  It will require 
extensive input of resources to restore links. 
 
For those cases when stability can be achieved following perturbation, the adjoint matrix 
is: 
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The weighted prediction matrix is: 

As in the baseline model, all links are equally vulnerable and contribute substantially to 
the overall functioning of the network. 

In summary, the baseline logistics system modified to contain increased high-level 
feedback has a significant tendency to be unstable.  Following an attack, the system may 
recover, but it will require intensive management and the infusion of extensive resources 
during the recovery period.  When the predictions apply, all variables are equally 
vulnerable.  The structure of the system does not offer protection and contributes 
negligible internal structural support for recovery. 

 
Comparative analysis of predictions 

The three alternative models of the logistics system scenario shown in Figures 34, 
35, and 36, respectively, represent three possible scenarios and have very different 
properties.  The prediction matrices for the three models are shown in Figure 37.  These 
three prediction matrices form a set of testable alternative hypotheses.  A hypothesis may 
be refuted when the predictions for the associated model fail to match observations when 
the system is stressed.  The stress may take the form of an attack or a monitored 
challenge to the system specifically designed as an experiment to test the hypothetical 
model. 

The prediction matrices present interesting consequences.  They share one 
property.  In all cases, elements a23, a24, a33, a34 have a response with high weight, 
indicating that these changes will occur in all cases if a press to the system were to occur 
on nodes 3 and 4.  (The direction of the response is indicated by the sign of the matrix 
element.)  This means that even if the exact structure of the system is not known, these 
changes are predictable, which can be either a strength or a weakness.   These invariant 
predictions among the models are highlighted in pink rectangles in Figure 37. 

Stability, the ability to recover from a temporary disturbance, is ranked from most 
to least stable, from the modified model containing increased low-level feedback (Figure 
35), the baseline model (Figure 34) to the model containing increased high-level 
feedback (Figure 36).  This behavior is positively related to the presence double links, 
which intuitively provide low-level or direct control.  The model containing increased 
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high-level feedback, however, demonstrates significant tendencies for unstable behavior 
and will manifest as a stable system only under highly constrained conditions. 

Paradoxically, the less stable models present less change following a press.  Thus, 
three columns in the prediction matrix for the model with increased high-level feedback 
and the baseline model contain columns of zeroes, mostly with high weights. These 
columns are highlighted by blue ovals in Figure 37. These results indicate that most 
variables would not change in abundance, albeit those that do would do so in an 
unpredictable fashion, given their low weight.  These variables are protected from input 
by the structure of the system. The most stable model, the model with increased low-level 
feedback (Figure 35) possesses a high number of non-zero responses.  Also counter-
intuitively, the least stable models have the highest weights overall.   

The desirability of any model is dependent on whether or not monitoring or 
protection is a priority.  If monitoring is essential, then the model in Figure 34 would be 
the structure most likely to indicate a response and would be desirable.  If protection of 
the most variables is desirable, then the least stable system would be more desirable.   

The results suggest that it is possible to construct a system with particular 
defensive goals in mind.  If, on the one hand, the site of an attack is predictable, 
monitoring is not feasible and there is a requirement for protecting a large number of 
variables, the model containing increased high-level feedback (Figure 36) might be best.  
A drawback is that the strength of interactions would have to be kept within strict limits, 
given the potential for instability of this system.  On the other hand, if attack sites are 
unknown, fluctuations are inevitable and recovery is a priority, then the model containing 
increased low-level feedback (Figure 35) would be best. 
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Figure 37. Prediction matrices for (a) Baseline model, (b) Model with increased low-level 
feedback, and (c) Model with increased high-level feedback 
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Prediction matrix for model with increased low-level feedback 
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Pink rectangles indicate common response across all models. 
Blue ovals show variables that do not respond to change. 
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Overall, it is possible either to construct, in advance, a system with a specific set 
of links that give it certain properties or, more importantly, to modify a system’s links in 
response to a changing landscape of attacks.   Model analysis also allows us to list both 
strengths and weakness present in any given system. 

5.6.2 Propheteer Strawman scenario 

We applied the system dynamics approach to variables derived from the 
Propheteer Strawman model to produce a plausible global system representation.   

Communication infrastructure is organized into subsystems for delivery of 
specific modes of communication: computer networks, cellular telephone, telephone, 
satellites.  These subsystems form a ‘guild’ of communication providers, a subset of 
variables that form one functional level of hierarchy within the global system.  These 
providers may compete with each other and this competition may represent the adaptive 
nature of response to attack.  For example, when conventional telephone networks are 
compromised, users switch to cellular telephones.  This switching behavior allows the 
overall structure of the global system to be maintained by substituting a variable within 
the same guild. 

Our goal was to present the mission as the product of an ecosystem consisting of 
resources, infrastructure and actors, delivering the output of one level of organization to 
higher levels in the system hierarchy.  We found that the Propheteer Strawman Scenario, 
attack trees in general and other models are oriented towards an atomistic, event-driven 
description of effects and countermeasures.  Our goal is to express the broader effects of 
input in the successful completion of the mission. 

We model missions as either stabilizing or destabilizing.  Stabilizing missions 
provide goods and services that are consistent with the normal functioning of the mission 
ecosystem. The ecosystem may be required to function at a higher rate during times of 
stress but remain stable.  For example, in response to an attack or threat, stabilizing 
missions preserve the basic patterns of interaction within the system.  Destabilizing 
missions are intended to disrupt patterns of interactions within the system.  Usually 
undertaken by an enemy, a destabilizing mission might include disruption of a crucial 
link between two variables that impairs the ability of the system to maintain its normal 
functions.  Destabilizing missions may be offset by adequate defense to prevent the 
disruption from occurring at all.  This may be enhanced by prior identification of 
vulnerable nodes within the system.  Once an attack has occurred, the effects may 
manifest themselves throughout the system as they cascade through feedback pathways.  
The locations of these indirect pathways may also be illuminated by analysis of system 
dynamics. 

At a global level, the system producing the mission can be modeled as a 
competitive relationship between two actors, such as the United States and China in this 
scenario.  At an atomistic level, the base resource of computer networks can be modeled 
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as a community formed by bandwidth (resource), sysadmins (infrastructure) and the 
functioning network (actor) that delivers a service to the larger system.  These 
intermediate levels are much more difficult to discern and many alternate models are 
possible.   Models vary in response to their purpose.  The models contained in this report 
describe an ecosystem supplying goods and services.  Military effectiveness is modeled 
as the ‘high level’ consumer. Military effectiveness itself is a subsystem consisting of 
resources, infrastructure and actors.  Many of the CC2 scenarios described activities 
designed to affect military personnel, so we create a distinct node for this variable. 

The CC2 events in Day 1 of the Propheteer Strawman scenario describe activities 
directed at critical national infrastructure through communications systems. They 
describe email threats targeted at military personnel, scanning, and insufficient available 
system administrator time to address all threats in a timely manner.   

On Day 2, the State Department is added to the model, when CNN, a media 
provider, reports based on information gathered from a classified system that the United 
States will likely revoke China’s MFN status.   

On Day 5, the New York Stock exchange and the NASDAQ shut down in mid-
day as a result of false stock reporting on portals such as Yahoo and AOL, causing 
investors to panic. 

 

Base level model 

The base level of the model consists of resources that support the other, higher-
level variables.  In the model presented, we take communications to be the base-level 
resource (Figure 38).  Communications, supported by a variety of providers (telephones, 
cellular telephones, computer networks), enable the global system to deliver defensive, 
financial, and diplomatic services required by the mission. 
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Figure 38.  Communications subsystem 

 
The links are resource/consumption links because the product of each level is consumed 
by the previous level to produce a good or service for the subsequent level.  
 Bandwidth is consumed by infrastructure to produce email connectivity.  The 
resource, bandwidth, is self-regulated because it is produced by factors outside of this 
system.  Infrastructure is also self-regulated, but email connectivity, which we take to be 
completely dependent upon resources and infrastructure, is not. 
There are several alternative providers of communications, each of which contains its 
own resources and infrastructure.  Each communication variable is summarized as a self-
regulated variable.  Together they form a guild of communication providers (Figure 39 – 
Note that for compact representation competitive links are represented by single lines 
terminating in bubbles at both ends rather than two separate links).  All members of the 
guild need not be present in any one instantiation of the system.  However, among those 
that are present, competitive links allow one variable to assume a dominant relationship 
in the system when another competing communications variable is depressed.  This 
allows for users to switch from conventional telephones to cellular telephones, for 
example, when conventional telephone networks are inconvenient or nonfunctional. 
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Figure 39.  Communications guild 

 
The entire guild, given it has overall negative feedback, can then be collapsed into one 
system (Figure 40): 
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Figure 40. Communications variable 

 
The system can be expanded for further analysis after it has been identified as a 
vulnerable node in the larger system.   
Media are also variables in the global model.  Specifically, CNN and portals are called 
out in the Propheteer Strawman scenario.  We model media leverage, the ability of the 
media to influence based on credible reports, as a subsystem of the global network 
(Figure 41). 
 

 

Media 
Leverage 

 
Figure 41.  Media variable 

 
False reports from portals caused the New York Stock Exchange NASDAQ to shut down 
on Day 5 of the scenario.  We model the NYSE volume as a self-regulated variable, since 
it is supported by brokers and analysts outside of the system.  Investors consume the 
product of the NYSE, but are also modeled with self-regulation, meaning that they are 
not completely dependent upon it.  We also depict the relationship between media and 
NYSE as resource/consumer, since the NYSE is able to increase its volume due to wide-
ranging participation enabled by media reporting of stock prices (Figure 42). 
Magnitude of the insider threat (Insiders) is represented in the model as a variable.  By 
incorporating them as a variable, their presence is modeled as a PRESS experiment, as a 
permanent change to the system. 
China is included in the diagram, but is unlinked to the system under study.  This 
discontinuity is indicated by a “?” in the digraphs. Although it may be the origin of many 
of the inputs to the system, the variable itself exists at a higher level of aggregation and, 
for the purposes of this modeling exercise, remains relatively undefined and nebulous. 
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Figure 42.  Financial subsystem 

 
On Day 2, an insider in the State Department leaked a classified message to CNN.  
We define the variable State Department Leverage (State Dept.) as the ability of the State 
Department to effectively influence matters of state.  We link the variable NYSE to State 
Department in a comensal relationship, since overseas investments are tied to positive US 
relationships in foreign countries. 
Since the email threats were directed at military personnel, we include personnel as a 
variable in the system (Figure 43). 
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Figure 43. Propheteer Scenario digraph 1 

 
Variables 

• Communications = Communications Volume 
• Military Personnel = Availability of military personnel 
• Military Effectiveness 
• State Dept = State Department leverage 
• Insider = Magnitude of Insider Threat 
• Media = Media Leverage 
• NYSE = NYSE Volume 
• Investors = Investor Wealth 

With the variables selected, we are now able to assemble them into a community by 
linking them together using arrows and bubbles to describe positive and negative 
relationships, respectively.  Recall that an arrow from one variable to another indicates 
that an increase in the first variable causes an increase in the second.  Consumption of a 
resource provided by a variable is depicted by an arrow out of that variable and a bubble 
into the same variable. 
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Analysis 
The global system shown in Figure 43 can now be used to generate hypotheses regarding 
system vulnerabilities and response.  Attacks can be identified by their point of entry into 
the system and their indirect effects can be traced through the system.   
The community structure is summarized in a matrix consisting of i=j rows and columns, 
effectively.  A value of positive 1 indicates a positive relationship to the ith variable from 
the jth variable.  A value of –1 indicates a negative relationship.  The matrix 
representation of this community is: 
The variables occur in the order: 
1. Communications = Communications Volume 
2. Military Personnel = Availability of military personnel 
3. Military Effectiveness 
4. State Dept = State Department leverage 
5. Insider = Magnitude of Insider Threat 
6. Media = Media Leverage 
7. NYSE = NYSE Volume 
8. Investors = Investor Wealth 

 
The adjoint is shown below.  Recall that the adjoint is used to derive the predicted 
behavior of the system to a PRESS, or sustained input.  The magnitude of the entries in 
the adjoint is used in the weight calculations.  The predicted effect of an input into the jth 
column variable on the ith row variable is given by the sign of the aijth matrix element. 

Community matrix for Figure 43: 

 := A



















































-1 -1 0 -1 0 -1 0 0

1 -1 -1 0 0 0 0 0

0 1 -1 0 -1 0 0 0

1 0 0 -1 -1 0 1 0

0 0 0 1 -1 0 0 0

1 0 0 0 0 -1 -1 0

0 0 0 0 0 1 -1 -1

0 0 0 0 0 0 1 -1  
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The columns represent the qualitative direction of change in all variables following a 
press to a variable (corresponding to the column number). 
This particular system can be very stable because of its strong self-regulation and many 
resource/consumption links.  In the system specified, communications and military 
personnel are the two most vulnerable nodes.  Weights of .5 or above are considered very 
reliable, from the weighted predictions matrix below.  Each element gives the weight of 
the corresponding element in the adjoint matrix above.  
Qualitative analysis of the structure of this system yields the following weighted 
predictions matrix (here with the sign of direction following a positive input): 
 

 
The weighted predictions show the contribution of structure to the qualitative predictions.  
A prediction wij with a value of 1 in the weighted prediction matrix is unambiguous and 

Adjoint matrix for Figure 43: 

 = adjoint_A




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



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
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









12 -6 6 -9 3 -11 1 -1

10 14 -14 2 12 -6 4 -4

2 18 20 -11 -9 -5 -3 3

8 -4 4 13 -17 -1 7 -7

8 -4 4 13 21 -1 7 -7

8 -4 4 -6 2 18 -12 12

4 -2 2 -3 1 9 13 -13

4 -2 2 -3 1 9 13 25  

 
Weighted predictions matrix for Figure 43: 

 = weighted_predictions_W
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







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





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


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
















1. 1. 1. 1. .33 1. .14 .14

1. 1. 1. .25 1. .75 .67 .67

.20 1. 1. 1. .60 .56 .43 .43

1. 1. 1. 1. 1. .14 1. 1.

1. 1. 1. 1. 1. .14 1. 1.

1. 1. 1. 1. .33 1. 1. 1.

1. 1. 1. 1. .33 1. 1. 1.

1. 1. 1. 1. .33 1. 1. 1.  
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reliable with respect to system structure.  When the value of a weighted prediction falls 
below 0.5, the probable sign of the prediction is structurally ambiguous and unreliable 
(Dambacher 2002).  This does not mean that the quantitative instantiation of the system is 
guaranteed to behave in the manner specified by the prediction matrix.  Rather, the 
weighted predictions show which behaviors are enhanced by structure.  More 
importantly, the qualitative and weighted prediction matrices show behaviors that might 
be precluded by system structure.



 

130 

 
 

Table 11. Table of predictions with weights for Propheteer Strawman digraph 1 

Input to: 
Effect on: Communi-

cations 
Availability 
of military 
personnel 

Military 
effective-
ness 

State 
Department 
leverage 

Magnitude 
of insider 
threat 

Media 
leverage 

NYSE 
volume 

Investor 
wealth 

Communi-
cations 

+  (1) -  (1) +  (1) -  (1) +  (.33) -  (1) + (.14) -  (.14) 

Availability 
of military 
personnel 

+  (1) +  (1) -  (1) + (.25) + (1) -  (.75) +  (.67) -  (.67) 

Military 
effective-
ness 

+  (.20) +  (1) +  (1) -  (1) -  (.60) -  (.56) -  (.43) +  (.43) 

State 
Department 
leverage 

+  (1) -  (1) +  (1) +  (1) -  (1) -  (.14) +  (1) -  (1) 

Magnitude 
of insider 
threat 

+  (1) -  (1) +  (1) +  (1) +  (1) -  (.14) +  (.1) -  (1) 

Media 
leverage 

+  (1) -  (1) +  (1) -  (1) +  (.33) +  (1) -  (1) +  (1) 

NYSE 
volume 

+  (1) -  (1) +  (1) -  (1) + (.33) +  (1) +  (1) -  (1) 

Investor 
wealth 

+  (1) -  (1) +  (1) -  (1) +  (33) +  (1) +  (1) +  (1) 
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The direction of the effect due to positive input into any variable is shown as 1, 0, or –1 
in Table 3.  The weighted predictions that describe the contribution of system structure to 
the effects of system input are shown in parentheses next to the predicted direction of 
effect.  Vulnerabilities may be read by row or column as column entries with a negative 
sign and weight above 0.5.  This threshold has been validated in simulation studies 
(Dambacher 2000).  When reading across a row, the vulnerability is read as the variables 
that will affect the row variable.  When reading down a column, the vulnerability is read 
as the effect of input into the column variable on the row variable. 
From Table 11, reading down the columns, input into variables 2 (availability of military 
personnel) and 4 (State Department leverage) will negatively impact the maximum 
number of variables.  Positive input into the military personnel (i.e., more time available) 
leads to decreases in: 
• Communications – as more resources are consumed to do work; 
• State Department leverage – as resources are devoted to military matters, rather than 

those of State; 
• Insider threat – as resources are diverted to detection and eradication or insider threat; 
• Collateral decreases in media leverage, NYSE volume, and investor wealth – as 

effects filter through the system. 
The attractiveness of the news media as a terrorist target was noted on 14 October 

2001, by United States Attorney General John Ashcroft (2001):  “If I were a terrorist, I 
would want to engender fear that was irrational, and I would want to curtail the 
availability of information in a free press that was good information.” 
Reading across the row, military effectiveness, we can read off the variables that will 
negatively impact military effectiveness.  Increased State Department leverage and 
increased magnitude of insider threat will negatively affect effectiveness, as will media 
leverage. 

Addition of a mutualistic link between State Department leverage and military 
effectiveness changes the vulnerabilities present in the system (Figure 44).  The 
coefficients of the characteristic polynomial are negative, which signifies that the system 
has sufficient negative feedback to support stability.  The predictions are shown in Table 
12.  The addition of this mutualistic, mutually enhancing relationship has removed many 
vulnerability points.  Increased magnitude of insider threat will cause decreased military 
effectiveness and State Department leverage, however, many of the other strong weights 
have been dissipated through this system modification.  The modification does not come 
without a price, however.  Along with decreased vulnerability (defined as targets that will 
most likely cause the most structural damage to the system when affested), comes 
decreased predictability. Increased complexity has made the system ‘softer’; its response 
to input will now be more ambiguous (less predictable). 

 
The variables occur in the order: 
 

1. Communications = Communications Volume 
2. Military Personnel = Availability of military personnel 
3. Military Effectiveness 
4. State Dept = State Department leverage 
5. Insider = Magnitude of Insider Threat 
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6. Media = Media Leverage 
7. NYSE = NYSE Volume 
8. Investors = Investor Wealth 
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Figure 44: Propheteer Strawman digraph 2 
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Table 12.  Table of predictions with weights for Propheteer Strawman digraph 2 

Input to: 
Effect on: Communi-

cations 
Availability 
of military 
personnel 

Military 
effective-
ness 

State 
Department 
leverage 

Magnitude 
of insider 
threat 

Media 
leverage 

NYSE 
volume 

Investor 
wealth 

Communi-
cations 

+  (.67) -  (.60) +  (.33) -  (.50) +  (.20) -  (.63) + (.20) -  (.20) 

Availability 
of military 
personnel 

+  (.30) +  (.58) -  (1) - (.23) + (1) -  (.33) +  (.091) -  (.091) 

Military 
effective-
ness 

+  (.43) +  (.64) +  (1) -  (.16) -  (.74) -  (.38) +  (.0.91) -  (.091) 

State 
Department 
leverage 

+  (1) +  (.11) +  (1) +  (1) -  (1) -  (.33) +  (1) -  (1) 

Magnitude 
of insider 
threat 

+  (1) +  (.11) +  (1) +  (1) +  (.33) -  (.33) +  (.1) -  (1) 

Media 
leverage 

+  (.67) -  (.60) +  (.33) -  (.50) +  (.20) +  (.60) -  (.58) +  (.58) 

NYSE 
volume 

+  (.67) -  (.60) +  (.33) -  (.50) + (.20) +  (.60) +  (.62) -  (.62) 

Investor 
wealth 

+  (.67) -  (.60) +  (.33) -  (.50) +  (.20) +  (.60) +  (.62) +  (.60) 
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5.6.3 Ecological model of a DDoS attack (Code Red) 
In previous work we modeled malicious code as a disease that was distinct from the 
community it disrupts.  In this epidemiological approach, we evaluated the impact of the 
malicious code in terms of basic reproduction rate and generation time.  It is useful when 
the information obtained from the analysis can be used to slow or eliminate the infection.  
When the attack proceeds so quickly that no such reaction is possible, we must look 
ahead to the effects of the attack.  In this ecological approach, we model the community 
and its predicted response to attack as it is mediated by all of the interacting, preexisting 
variables present in the system.   
Attacks may be modeled as pulses or presses. As we discussed previously, pulses deliver 
a measured dose of input and then cease. In a pulse experiment, a reasonable input is 
applied, and the community is observed as it returns to its perturbation equilibrium state. 
In a press experiment, the input is incorporated permanently (as a modified input or 
output rate) into the community.  Vector-borne disease can be viewed as a press 
experiment with at least three variables, disease organism, vector, and host.  More 
complicated transmission communities are possible and these have been discussed in 
Chapter 4. 
In Figure 45, we model an ecological system in which Code Red is a ‘top predator’. The 
variables in this system are: 
• available bandwidth 
• number of machines running IIS not infected by Code Red 
• number of machines running Apache (not infectable by Code Red) 
• level of usage (work capacity of the system)  
• number of machines running IIS infected with Code Red. 
Inclusion of Code Red as an element in a stable community is supported by recent reports 
that Code Red II continues to infect, months after its initial release.  Dug Song, a security 
architect at Arbor Networks noted, “Code Red and Nimda are going to be a permanent 
part of the Internet landscape for some time to come” (Costello 2002). 
All variables, except Code Red, are self-regulated because they receive contributions 
from outside this specific system.  One way to test the self-regulation assumption is to 
ask: If the variables providing input into this variable were eliminated, would the variable 
still exist?  If the answer to this question is affirmative, then a self-regulation link on the 
variable under consideration should be included in the model.  Code Red, which exploits 
an IIS vulnerability, is modeled as a negative input into IIS.  Since Code Red is not 
maintained by resources outside the system and since it does not exhibit density-
dependent growth (in fact, its purpose is to replicate to the maximum extent possible, 
without bound), it does not receive a self-regulation link.  The signed digraph for this 
model is shown in Figure 45. 
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Figure 45.  Code Red community level model 

 

As in any modeling exercise, clear and concise definitions of variables and their 
interrelationships are necessary to construct an accurate model.  The process of 
generating a model like the one shown in Figure 45 is summarized in Table 13. 
The signed digraph of the system (Figure 45) is then converted into a matrix 
representation.  Each column of the resulting inverse matrix represents the change that 
will occur for each variable when a positive input occurs in the variable corresponding to 
this column.  The effect of input on all variables from all possible input is thus tabulated 
producing a table of predictions (Table 13). 
Column two shows the effect of control through depression of IIS.  The table entry in 
column two, row five (a52) shows the effect of a positive input into the number of 
uninfected machines running IIS on the number of machines infected with Code Red.  To 
determine the effect of a negative input, the sign in this table entry is reversed, so that we 
read that a negative input into the number of uninfected machines running IIS causes a 
decrease in the number of machines infected with Code Red.  Control is achieved with 
little disruption to the existing system structure by reducing the number of servers 
running IIS.  This is not necessarily a viable alternative, but represents one result of the 
analysis.  An alternative means of control through increased utilization of Apache servers 
is shown in column 3.  Increased numbers of Apache servers result in a reduction of the 
number of machines infected with Code Red (column three, row five) utilized bandwidth 
(column three, row one) with no change in number of IIS servers (column three, row 
two).   Input into Code Red alone is not sufficient to curb its effects. Reduction in the 
number of machines infected with Code Red (column five, reverse signs for negative 
input) increases the number of uninfected machines running IIS, but does not decrease 
the number of machines infected with Code Red (column five, row five).  These results 
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reflect the interconnectedness of the system. When Code Red is taken as a community 
variable delivering a protracted effect on the system, its effects are mediated by all 
community members.  It is no longer possible to isolate and contain the threat. 
 

Table 13.  Code Red community level model prediction matrix 

INPUT→ 
 
OUTPUT↓ 

Available 
bandwidth 

Number 
uninfected, 
running IIS 

Number 
uninfectable, 
running 
Apache 

Level of 
usage 

Number 
infected with 
Code Red 

Available 
bandwidth 

+ 
(increase) 

0 
(no change) 

- 
(decrease) 

+ 
(increase) 

0 
(no change) 

Number 
uninfected, 
running IIS 

0 
(no change) 

0 
(no change) 

0 
(no change) 

0 
(no change) 

- 
(decrease) 

Number 
uninfectable, 
running 
Apache 

+ 
(increase) 

0 
(no change) 

+ 
(increase) 

- 
(decrease) 

+ 
(increase) 

Level of 
usage 

+ 
(increase) 

0 
(no change) 

+ 
(increase) 

+ 
(increase) 

0 
(no change) 

Number 
infected with 
Code Red 

0 
(no change) 

+ 
(increase) 

- 
(decrease) 

0 
(no change) 

0 
(no change) 

 
The ecological approach to the analysis of cyber attack is a novel one.  While many 
current control technologies focus on the most basic components of the system such as 
firewalls and routers, the ecological approach acknowledges that some attacks will 
overwhelm these control measures and allows administrators and analysts a way to look 
ahead to the consequences of such a breach.  The approach forms a complement to 
current detection technologies. 

5.6.4 A CPU-centric model for availability (Morris worm DDoS attack) 
An attack on the availability of a system to perform its work (essentially a denial-of-
service) occurs when the resources of the system are insufficiently available to perform 
the normal work of the system. We model this by considering the available resources of 
the system as a variable.  In our model, the resource is available CPU time, and we posit 
that normal work consumes available CPU time in a predator-prey fashion.  
This model represents worm propagation along the lines of the Morris worm (Reynolds 
1989). Out of confidentiality, integrity, and availability, the Morris worm essentially 
attacked availability (because it used so much CPU time on machines that it infected). 
Thus, this model is centered around available CPU time; however, one could incorporate 
other resources into this variable as well. This model applies to other resource-hungry 
worms such as Code Red. 
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Variables 
We define a CPU-centric model, in which we have the following quantities. We note that 
this model can be interpreted at the level of one computer, or an entire network. 
 Available CPU time: The available CPU time is a regenerating resource, which is 

consumed by any kind of work performed by the computer. 
 Normal work: Normal work is work done by the computer system in the process of 

fulfilling its mission, such as user applications. 
 Abnormal work: Abnormal work is work done by unauthorized or otherwise 

anomalous processes, such as worms that are trying to crack passwords or to spread 
to other machines. 

 Vulnerabilities: Vulnerabilities of the system(s) can be exploited (by crackers, 
unauthorized users, worms, viruses, etc.) to create abnormal work on the system. 

 Countermeasure effort: Countermeasure effort is administrator effort used to patch 
vulnerabilities. 

 
Relationships 
We document and justify relationships between variables.  
 Available CPU time is self-regenerating and thus has a negative self-effect. Also, 

available CPU time is consumed by both normal and abnormal work. Furthermore, 
available CPU time is consumed by countermeasures. This relationship depends on 
the assumption that administrators must reduce available CPU time to install patches, 
for instance because they have to shut down machines. 

 Normal work has a negative self-effect, since its persistence is controlled by outside 
influences, such as mission requirements and user needs. Normal work is a consumer 
of CPU cycles. 

 Abnormal work is a consumer of CPU cycles. Abnormal work is increased when 
vulnerabilities increase, since vulnerabilities increase opportunities for malicious 
elements to insert abnormal work into the system. Abnormal work on the system 
causes the administrators to increase effort reacting to abnormal situations, thus 
raising the amount of countermeasure effort. 

 Vulnerabilities are self-regenerating, since they come into existence by means of 
parameters outside the system (when they are uncovered or inserted). Increasing 
countermeasure effort causes vulnerabilities to decrease, since the administrators are 
expending effort on patching vulnerabilities. 

 Admin countermeasure effort preys on CPU time, assuming the admin has to reduce 
the availability of the CPU to install patches (e.g., by shutting down the machine). 
Admin countermeasure effort increases with abnormal work, due to poorer machine 
functionality, user complaints, alarms, etc., which presumably causes the admin to 
devote time fixing vulnerabilities. 
The digraph for this model is shown in Figure 46. 
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Figure 46:  CPU-centric model of availability attack 

 
Predictions 

We model the Morris worm as a positive press perturbation on abnormal work, 
consistent with how the Morris worm was first perceived. Another way to interpret 
this press is as an increased awareness among malicious elements of how to exploit 
the existing vulnerabilities, leading to increased exploitation. This model accounts for 
the appearance of copycat worms that take advantage of similar vulnerabilities, which 
has happened frequently after the initial release of a worm (such as Code Red).  The 
release of a worm can be perceived not only as a one-time pulse event when it is 
released into the wild, but also as a long-lasting effect arising from publicized 
vulnerabilities.  
Predictions of a positive press on abnormal work are that over the long term, 
available CPU time will decrease, normal work will decrease, abnormal work will 
increase, vulnerabilities will decrease, and admin countermeasure time will increase. 
We believe that all of these predictions are consistent with the long-term observed 
behavior of systems after a publicized exploitation via a worm’s release. 

Here is an example of a result from the simulation tool. 
 

Adjoint Matrix: 
1.00 -1.00 -1.00 -1.00 1.00
1.00 1.00 -1.00 -1.00 1.00
-1.00 1.00 1.00 1.00 -3.00
-1.00 1.00 -1.00 1.00 -1.00
1.00 -1.00 1.00 1.00 1.00
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Total # of simulations =     5000 
likely stable=          63 
manageable=         261 
likely unstable        4676 
 
Note that most instantiations of this system are likely to be unstable. An inspection of the 
system reveals that all of the paired loops are conjoint. There are three loops of length 4, 
all of which pass through available CPU time, and are positive. Thus, the high-level 
positive feedback tends to dominate the system, resulting in instability. Our interpretation 
of this instability is that the system is unlikely to return to equilibrium without external 
intervention; for instance, a significant increase in countermeasure effort. This is 
consistent with the behavior of spreading worms, where sysadmins often have to make 
very active efforts to shut down propagation. 

5.7 Examples of positive feedback systems 
In this section of the report, we discuss modeling confidentiality and integrity attacks as 
systems dominated by positive feedback.  An attack on the confidentiality of a system 
means that an unauthorized person is able to read or take advantage of information stored 
within that system. Ecologically, a model of the system would account for impact on 
system behavior. After our analysis of this situation, we discuss why we believe it is 
appropriate to model integrity attacks with the same model. 

5.7.1 Confidentiality attacks 
Damage from a confidentiality attack is the result of the act or threat of unauthorized 
disclosure.  The disclosure must cause harm to the “interests” of the system in some way.  
A disclosure of system vulnerabilities could allow hackers to disrupt other system work.  
A disclosure of payroll information in a company may impact morale as employees 
bicker about salary inequities.  
A disclosure of medical information could cause patient embarrassment or prevent them 
from getting a job or an insurance policy. 
A disclosure of business trade secrets could negatively impact a company’s ability to 
generate revenue using its proprietary methods.  
A disclosure of military information could cause an operation to fail.  
Various mechanisms for released confidential data could impede normal work. Thus, we 
choose to model confidentiality as confidential data being used to accomplish the normal 
work of the system.  We can model attacks as disruptions of this performance of normal 
work.  
If we model work in such a way that data must be confidential for the work to be 
completed properly, then we can model confidentiality violations by diminishing the pool 
of confidential data that can be used to accomplish normal work. 
Recall the paradigm that we have been using to model the use of data as a resource; 
namely, modeling the “unused” data as the variable, so that performing work with it 
diminishes it. However, confidential data that have been used to generate normal work, 
but are still available in archives, could potentially have deleterious effects if released. 
Thus, the action of performing normal work does not really decrease the level of 
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confidential data. In fact, in this model, we assume that work done using confidential data 
actually spawns more confidential data.  This is an example of positive feedback. 
Another aspect to model is the role of vulnerabilities in confidentiality violations. 
Vulnerabilities can take several forms; network vulnerabilities that allow hackers to 
download proprietary information are one form. Poor policies or controls that allow 
unauthorized access to data are another. In any case, the presence of vulnerabilities 
should increase the level of attack on confidentiality and increased countermeasure work 
done. 
Now, to describe why we use the same model for integrity attacks, we first define an 
attack on the integrity of information in a system as an attack that corrupts the 
information so that it is no longer sufficiently accurate or complete for its intended use. 
Because our model for confidentiality attacks represents the attack on confidentiality of 
data as an attack on its suitability for its intended use, we found that the same model 
captures the essential features of attacks to data integrity. This follows because we have 
modeled both confidentiality and integrity of data as necessary elements to complete 
normal work successfully. To illustrate how these two qualities are related to each other, 
suppose a confidential target list is leaked, and the enemy moves its targets so that the 
operation does not achieve its objectives. Then the end result is the same as if an attack 
had corrupted the target list, thus perpetrating an integrity attack on the target list. By 
moving the real-world targets (through the use of the confidential data), the enemy has, in 
effect, attacked the integrity of the target list data, by destroying the data’s suitability for 
its intended use. 
Our graphical model is shown in Figure 47. 
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Figure 47: A general model of confidentiality attack 
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We assume that this system has positive feedback, and thus the conventional signs of the 
prediction matrix are reversed. Positive feedback is a reasonable assumption when 
dealing with human activities, such as economic networks or military activity. Positive 
feedback reflects the fact that these activities rely on resources that are increasing at a 
steady albeit small rate over a reasonably long period. In both economic development and 
warfare, lack of growth is regarded as stagnation while constant growth is perceived as 
stability.   Positive feedback reflects this reality.  Negative feedback still plays an 
important role. A hierarchical approach to modeling would be to identify stable sub-
systems with negative feedback and assemble them when required to take advantage of a 
positive input over a given period. 
The adjoint matrix for this system is 
 

0 1 0 1
0 0 0 1
-1 -1 0 0
1 1 -1 0

 
 
A positive press on vulnerabilities has a positive effect on the countermeasures taken. 
Note however that the effect is indirect. This behavior is consistent with the following 
scenario: an increase in vulnerabilities leads to more attacks on confidential data, which 
causes the system to compensate by increasing its level of countermeasure activity. 
Also, a negative press on normal work (variable 2) has the following effect: a positive 
effect on confidential data, no effect on the level of normal work, a negative effect on 
vulnerabilities, and a positive effect on countermeasures. (Recall that in a positive 
feedback system, the signs of the predictions are opposite to those coming from a 
negative feedback system.) This is consistent with what happens when normal work is 
disrupted by loss of confidential data. After such a disruption, the sysadmins are called to 
take countermeasures, which reduce the level of vulnerabilities. The level of confidential 
or intact data recovers as it is replenished by normal work.  When we ran the simulation 
using the community analysis module, we obtained the following result. 
Total # of simulations =     5000 
likely stable=         192 
manageable=         159 
likely unstable        4649 
Note that this system also has a high-level positive feedback loop going through all of the 
variables, which is responsible for the system’s instability. 

5.8 Building structurally stable networks 
Straight chain hierarchies are structurally very stable.  However, their lack of redundant 
pathways for resource flow makes them prone to oscillation.  Even though an attack may 
not be catastrophic, the oscillations introduced may severely impair recovery.  Emergent 
properties that describe the health of a system, such as a tendency to oscillate, will be 
discussed in future work. 
Given that web-like models have some advantages, how might one construct such a 
model with adequate foresight to enhance desirable system properties?  One approach is 



 

142 
 

to specify the nature of relationships explicitly.  One such disclosure can be found at 
http://www.wiretrip.net/rfp/policy.html.   
The policy explicitly describes the relationship and responsibilities of originators of a 
vulnerability or problem, and the maintainer of the cognizant software, hardware or 
resources.  The policy outlines a procedure for actions to be taken and compensation (i.e., 
credit for the discovery) for the discovery and resolution of a problem. 
The policy does not describe a stable system, but rather specific relationships within a 
larger system.  The interaction between originator and maintainer is a mutualistic one and 
potentially unstable, where the reports and credit are exchanged.  Maintainers consume 
reports and give credit; originators consume credit and give reports.  Users consume 
benefit from both originators and maintainers while originators and maintainers suffer 
loss of time.  The users variable has the potential of increasing the stability of the system.  
This system is shown in Figure 48. 
 

 

Users 

Originators Maintainers 

 
Figure 48. Keystone system defined by policy 

 
This system is referred to as a ‘keystone predator’ system in ecology. 

5.9 Conclusion 
The systems presented in this report have been simplified for purposes of illustration.  
The specification of more complex systems will require domain expertise of security and 
network administration personnel who possess an understanding of the interrelationships 
among pertinent variables.  The models may be focused at the security level, or may 
incorporate broader levels of aggregation.  These broad models will benefit from the 
contributions of professional expertise from all areas represented. 
The purpose of the models is to generate testable hypotheses.  For a given system 
configuration, pulse and press experiments will produce measurable results that may 
verify system structure.  These experiments manifest as attacks.  Subsequent observation 
of the damage they cause and the success of recovery efforts will elucidate system 
structure, stability, and vulnerability. 
In summary: 
• Self-regulated straight-chains are the most stable (most likely to recover from a 

disturbance) system configuration, but tend to oscillate following a disturbance. 
• Size of system is correlated with inherent system characteristics. 
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• Systems may be composed of multiple subsystems. 
• Systems may be complicated horizontally or vertically. 
• The adjoint of the qualitative matrix gives location of potential vulnerability, but not 

magnitude.  ‘Weight’ allows assessment of potential impact. 

5.10 Applications 

5.10.1 Vulnerability assessment to terrorist threat 
Schudel et al. (1999) noted the indirect nature of possible attacks: “[t]he directed 
adversary will attack only what is necessary to achieve their goal.  If their mission can be 
achieved by attacking peripheral systems or even systems out of the target’s control, they 
will.” 
Vulnerability is important because the “adversary will attack relatively insecure host 
platforms (ibid.).”  Identification of host platforms that are integral to the functioning and 
stability of the larger system is important to prioritize the implementation of defensive 
measures.  This is a form of preventative triage. 

5.10.2 System management 
One desirable management practice is to manage the community so that all components 
benefit.  In fact, while consistent values (i.e., all positive, meaning that all variables in the 
community increase in tandem) in the prediction matrix are possible (Nakajima 1992), 
they are rare.  Management regimes often must cope with prediction matrices that contain 
a mixture of positive and negative effects and rapidly choose which components should 
be enhanced. 
Analysis of the underlying structure of computer networks as communities highlights 
network vulnerabilities through the prediction matrix.  The predictions highlight variables 
that are vulnerable to systemic failure through indirect effects mediated through the 
network.  Vulnerable strategic nodes may require alternate linkage patterns with the 
network or additional defensive measures. 

5.10.3 System response 
JV2020 (Shelton, 2000) states that “[b]y developing and using approaches that avoid US 
strengths and exploit potential vulnerabilities using significantly different methods of 
operation, adversaries will attempt to create conditions that effectively delay, deter, or 
counter the application of US military capabilities.”  Inducing perturbation to a 
vulnerable variable of a computer network community may cause many indirect effects.  
This press-mode of attack cannot be directly countered once the systemic changes have 
been initiated.  Pulse-mode attacks, those resulting from the direct application of input to 
a variable are easier to counter.  One need only remove the source of input.  Press-mode 
attacks to an infrastructure prepared for pulse-mode response may have potentially 
widespread and catastrophic effects because the necessary adaptations to the continued 
presence of the threat are not addressed.  The attack is asymmetric in this case because 
the attacker possesses more information than the defender regarding the intent and actual 
target of the attack. 
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5.10.4 Intelligence gathering 
Just as press and pulse experiments can be applied to friendly networks to discern 
structure and points of vulnerability, we believe that these experiments applied to enemy 
networks may elucidate similar information. Adversary systems may differ 
fundamentally from our own.  For example, Shai Feldman of the Jaffee Center for 
Strategic Studies at Tel Aviv University in Israel noted, “Whether it’s wise or not, or 
appropriate or not, in reality, countries tolerate a certain level of terrorism, and live with a 
certain level of it” (in Purdum, 2001).  Because of these differences, system response to 
attack may be expressed in unexpected ways.  Qualitative system models constitute one 
method of discovering these differences and predicted response to attack.  The 
application of these models to enemy cyber systems is beyond the scope of the current 
work. 

5.11 Suggested research directions 
The next logical step in developing the capability for rapid hypothesis generation and 
assessment for cyber systems using qualitative modeling techniques is to validate the 
models using simulated models.  The models must incorporate a sufficient number of 
higher order variables to allow for generation of hypotheses about the entire system.  The 
simulation-based models could be used to test the speed with which the qualitative 
models can be produced and their accuracy.  Accuracy may be assessed by the level of 
agreement between the predictions and the observed simulated effects of cyber attack.   
The model building techniques presented in this report remain primitive.  Detailed, large-
scale scenarios will allow development of detailed guidelines for analysts. 
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APPENDIX A – Ecologist’s View of the Insider Threat 

            In this Appendix we briefly look at the insider threat from an ecological 
perspective. 
 

The complex nature of critical information systems makes them vulnerable to 
attack and insider activity poses a significant threat to these systems.  Insiders represent 
one facet of dynamic, interconnected systems of humans and machines.  From an abstract 
perspective, complex systems pose a difficult analytical problem.  Given that 
epidemiologists and ecologists have studiously explored complex biological systems and 
developed a powerful set of analytical models and tools, we believe it will be informative 
to explore the parallels between the biological and cyber domains.  In this paper, we 
explore a multidisciplinary approach to the problem based on the human disease control 
paradigm and examine ecological perspectives to the insider threat. 
 

A.1 Multidisciplinary approach for human disease control 
An insider has been defined as “any authorized user who performs unauthorized 

actions.  Examples include users, privileged users, system administrators, network 
administrators, facility support personnel, temporary employees, and contractors.”  
Insider threat has been defined as “any authorized user who performs unauthorized 
actions that result in loss of control of computational assets.”10 
Challenges to human health are addressed by the interleaved disciplines of medicine, 
public health, and ecology (Figure A-1).  Each addresses a specific level in the hierarchy 
of analysis: individuals (medicine); human populations (public health); and human 
populations, disease organisms, and their environment(s) (ecology): 
• Medicine is concerned with diagnosis and treatment of individuals  (cure). 
• Public health is concerned with prevention and population level diagnosis 

(prevention). 
• Ecology is concerned with tolerance and mitigation (resilience, survival of systems). 

 

 

 

 

 

 

 

 
                                                 
10 Anderson, Robert H., Thomas Bozek, Tom Longstaff, Wayne Meitzler, Michael Skroch and Ken Van 
Wyk.  Research on mitigating the insider threat to information systems - #2: Proceedings of a Workshop 
held August, 2000.  http://www.rand.org/publications/CF/CF163 (accessed 12/4/00). 
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Figure A-1: Relationships among medicine, public health, and ecology 

Medicine 

Public Health Ecology

 
 
These disciplines also vary with respect to the concept of acceptable loss.  Medicine does 
not conceptually trade off loss to individuals for the gain of others, and maximal 
measures are taken to treat all individuals.  As focus shifts to public health, the health of 
the population is often acquired at a cost to some individuals.  Triage is an example in 
which an order of treatment based on anticipated benefit to the population (originally of 
armed combatants) is imposed in large-scale emergencies. 

Ecology inherently considers the loss of individuals to maintain the stability of the 
system.  In natural ecosystems, prey are consumed by predators, and plants by 
herbivores, to persist.  The disciplines share a common goal of reducing morbidity and 
mortality in the human population.  The effects of each discipline and their intersections 
are summarized in Table A-1.  

Teasing apart a problem from many perspectives presents alternative approaches 
for control. Questions posed and hypotheses generated from the medical, public health, 
and ecological perspectives can be applied to IA as well and are suggested in Table A-2. 
Control can be initiated at any level.  Comprehensive control involves activity at all 
levels simultaneously. 
 

Table A-1.  A multidisciplinary approach to the control of malaria 

Human 
health 

Function (Questions 
addressed) 

Example 

Medicine Diagnosis and treatment (What 
disease is present and how can 
it be treated?) 

Malaria can be diagnosed by 
blood tests and treated with 
chemotherapeutic agents. 

Intersection 
of medicine 
and public 
health 

Risk reduction for individuals 
(how can the risk of 
contracting the disease be 
reduced for individuals?) 

Risk to individuals can be 
reduced by behavioral 
modifications that will reduce 
contact with infected 
mosquitoes. 

Public 
health 

Prevention and management of 
disease (What population-level 
measures can be taken to 
reduce the occurrence of 
disease?) 

Large-scale measures such as 
insecticide spraying will reduce 
exposure for human 
populations. 

Intersection Understanding and modifying Modifying the environment by 
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of public 
health and 
ecology 

environmental factors that 
promote disease (Are there 
measures that will reduce the 
risk of disease for 
populations?) 

draining standing water will 
prevent mosquitoes from 
breeding. 

Ecology Understanding structure of 
communities and how they 
integrate to respond to disease 
and disease-bearing organisms  
(How does the system 
structure support continuance 
of the disease?) 

Human and mosquito 
populations share a need for 
clean, accessible water. 

Intersection 
of ecology 
and medicine 

Diagnosis of disease, 
incorporating environmental 
assessment (What organisms 
were present when disease was 
contracted?) 

Malaria is transmitted to 
humans by a specific genus of 
mosquitoes (Anopheles) and 
reproduces in humans through 
a complex biological process. 

 
 

Table A-2.  A multidisciplinary approach to the insider threat 

Cyberhealth Questions addressed Hypotheses 
Medicine How can the insiders be 

detected and thwarted? 
Insiders are a disease of the 
system and can be diagnosed 
using detectors and treated 
by removal. 

Public health What measures can be taken to 
ensure system persistence? 

Insider threat can be 
minimized by sacrificing 
individuals in an affected 
group.  

Ecology What is the effect of the insider 
threat on the system-at-large 
and how can the system-level 
effect be managed? 

Insiders can be managed and 
regulated. 

 

A.2  Ecological perspective of the insider threat 
Ecosystems are described in terms of the environment in which they occur, the 

resources they utilize, and the organisms that comprise them.  A group of interacting, 
interdependent organisms is called a community.   

A.3  Resources and environment  
Resources are obtained from the environment. There are many potential resources 

available to an insider.  By definition, an insider is ‘authorized’ and therefore maintained 
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in the system.  Legitimate data, CPU cycles, memory and access to other locations may 
all be used in an unauthorized manner.  

Morris and Rossignol11 have developed a mathematical theory of interactions that 
both identifies the types of relationships possible between a consumer and its resource, as 
well as the likely path of change that can occur from one type to another.  Based on 
parameters characterizing growth of populations, consumer strategies may be regarded as 
tradeoffs between these parameters.  Furthermore, by considering the ‘intimacy’ of 
relationships, these tradeoffs gain a degree of complexity that matches our intuition of the 
natural world.  

Pianka12 described environments as being resource-poor and resource-rich and 
suggested the types of organisms that might be found in each.  Organisms in resource-
poor environments typically cannot derive sufficient nutrition unless they consume many 
organisms.  Sheep, for example, are grazers who consume multiple blades of grass.  Their 
relationship with the grass is nonlethal, that is, the individuals of grass need not die, 
although some may.  Lions, on the other hand, also consume multiple prey organisms, but 
must kill them.  Their relationship with their prey organisms is lethal.   

In resource-rich environments, organisms may derive more than adequate 
nutrition close by.  Organisms in such environments, parasites and parasitoids, do not 
need to search constantly for food.  Parasites feed on their hosts in a nonlethal manner.  
Parasitoids, a more obscure group to nonbiologists, kill their hosts after an appropriate 
time interval that allows maturation of their young.   Predators and parasites enjoy long 
adult longevity, but do not reproduce at a high rate.  Grazers and parasitoids are 
characterized by shorter life spans, but are highly fecund.  The adult stage of parasitoids 
is very short, barely long enough to mate and infect new hosts with their offspring. 
 

We propose that insiders exist in a resource-rich environment in the organizations 
in which they are employed or otherwise engaged.  Their hosts are the networks in and on 
which they work.  An insider engaged in pilferage of data acts as a parasite, presenting a 
nonlethal threat to the network.  An insider planting a ‘logic bomb’ acts as a parasitoid 
whose host may die as a result of his actions after an appropriate interval. 

                                                 
11 Morris AK and Rossignol PA.  Trophic Evolutionary Pathways: A Model Based on 
Life History Parameters, submitted. 
12 Pianka, E.R. (1970) On r- and K-selection. American Naturalist 104: 592-597. 
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In terms of insider threat, whether or not the insider resembles a parasite or a 
parasitoid depends on his or her intent.  Parasitoids present an acute problem that must be 
quickly resolved to avoid catastrophic damage.  Parasites represent a more chronic 
problem that can be debilitating, but not lethal in the immediate future. 
 

A.3.1 Models 
In the course of his or her activities, an insider may also interact with other people 

and organizations, any of which may be included in the model of an insider community. 
Ecological models are hierarchical in form.  Simple ecological models can be 

combined to form more complex models describing higher level functions.  Ecosystem 
models can address the following levels of analysis of the insider threat: 
• Thermodynamic model: Where does the insider obtain sustenance? 
• Cybernetic model: Can insider threat be internally regulated by the system? 
• Evolutionary model: Can we anticipate how insider behavior will change and adapt? 

Thermodynamic (trophic or food web) models capture consumption patterns (who 
eats whom?).  They reflect the thermodynamic cascade of energy through the ecosystem. 

Cybernetic models incorporate feedback and provide a window into the 
vulnerabilities of a system.  Vulnerabilities to input can be assessed by analysis of the 
effect of input into each community member.  Internal vulnerabilities can be assessed by 
analysis of the feedback relationships that occur within the community.  Cooperation and 
competition are introduced in cybernetic models.  Both can be stabilizing.  So-called 
keystone predators stabilize ecosystems by regulating competing prey populations.  For 

Figure A-2: Organisms classified by trophic strategies in resource-rich and resource-limited 
environments   
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example, consider two competing populations, elk and deer.  The success of one 
population reduces and potentially eliminates the other.  Predators can regulate and 
stabilize the system by regulating both populations at sustainable levels (Figure A-3).  
The tradeoff with respect to the insider threat is that the presence of the insider is 
preserved as a consequence of the stability of the system.  Situations in which such a 
tradeoff might be acceptable include instances where personnel with technical skills who 
engage in low-level threats, such as gaming, are difficult to recruit and retain.  Stability 
comes with a cost; it is necessary to allocate resources to regulatory links. 
 

Figure A-3. Insider regulated by a keystone predator.13 
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Succession models also suggest models of the effects of insider activity within a system.  
From the point of view of succession, ecosystems proceed through stages of 
development.  Beginning with a loose aggregation of relatively independent entities, the 
system becomes more interconnected as it grows. Accordingly, insider activity will be 
less of a threat to very young organizations.  As the organizations grow in size and 
accommodate more individuals within them (potential insiders), the threat of catastrophic 
surprise becomes greater. Figure A-4 shows a graphical representation developed by 
Holling14, in which the cycle of succession is shown in terms of connectedness and stored 
capital.  Loosely connected species come into physical proximity during the exploitation 
phase.  Resources are plentiful.  As communities form, species become more 
interconnected and more resources are stored within the system, for example, as forests.  
Release occurs when the increasingly fragile, but extremely stable system represented at 
the cusp of the curve in the conservation phase is perturbed from equilibrium.  Resources 
are released from stored capital and returned into the environment.  The cycle continues 
when loosely organized survivors or new species recolonize the environment. 
 
 

                                                 
13 This diagram is a signed-digraph of the relationships among three species.  Positive effects, those that 
cause an increase to one species from another, are represented with arrows.  Negative effects, those that 
cause a decrease to a species are represented with lines terminated in bubbles. 
14 (in Janssen, M. A. and S. R. Carpenter. 1999. Managing the Resilience of Lakes: A multi-agent modeling 
approach. Conservation Ecology 3(2): 15. [online] URL: 
http://www.consecol.org/vol3/iss2/art15) 
 



 

154 

 
 

Figure A-4. Holling’s succession model 
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Given a stable system that includes insiders, evolutionary models suggest how 
insiders will change as technology advances.  Metaphors to fitness may provide an 
understanding of how ecologically important traits may express themselves among 
insiders as a group in the future.  For example, social engineering skills, such as the 
ability to convince an operator to verbally divulge passwords, may provide an advantage 
for insiders with this skill.  Through time, this skill will become more common as those 
who possess it are more successful. 

Success among insiders differs from success among biological organisms because 
it does not involve reproductive potential, in the sense of offspring.  However, alternate 
pathways for insiders to obtain, accumulate, and disseminate tools exist.  For example, 
mature hackers do produce more hackers in a didactically reproductive process. 

A.4 Data 
Ecological communities are described in terms of direct and indirect effects.  

Direct effects express the direct, one-to-one impact of one community member upon 
another.  Indirect effects express the impact of one community member upon another 
through feedback.  Potential sources of direct data include event logs and reports from 
filters.  Indirect data might be obtained by tracking data pedigree.   

A.5 Analysis 
Model formulation is based on observation of population levels and interactions 

among organisms. These models inform hypotheses about ecosystem structure. 
Like many computer networks, ecosystems are unique.  Natural experiments, such 

as floods, fires, and el Niño, cannot be replicated and are observational.  Controlled 
experiments are conducted on small sections of ecosystems.  For example, transects on 
the sea floor may be enclosed in cages to prevent the entry of predators, and the effects 
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on organisms within transects may be observed.  Structural information about computer 
networks might also be obtained from such press experiments.  For example, to assess the 
level of insider threat, so-called ‘press’ experiments (a permanent change in a growth 
parameter of a population) might consist of diversions in which alternate data sources 
were made available and access to them observed.  Mathematical analysis (in this case, 
the inverse of the community matrix) provides a prediction against which results can be 
interpreted.  These analyses are discussed in detail in Chapter 5. 

 

A.6  Conclusion 
 

The insider threat cannot be addressed in isolation.  Observations from many 
levels are necessary to form broad, inclusive models spanning detection, prevention, and 
tolerance.  The ecological perspective of the insider threat suggests hypotheses such as 
the following: 
• Insider activity can be regulated with competition. 
• Insider activity is less damaging in loosely organized systems. 
• Environmental modifications (press experiments) allow observation of system 

structure incorporating insider activity. 
The insider threat is more than a technological problem and will require more than a 

technological solution.  The health-ecology paradigm provides a template on which to 
base models of management and control and provides proven analytic techniques for 
assessment.   
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Appendix B - Brief Review of Computer Taxonomies 

In this Appendix, we briefly review current taxonomies for computer attacks and 
malicious code.   

B.1  Classification of attacks 
Taxonomies of malicious computer attacks have been constructed, using computer-
appropriate characters. Howard evaluated examples of taxonomic scheme against 
characteristics of satisfactory taxonomies presented by Amoroso (1994). According to 
these criteria, taxonomies should have classification criteria that are 
• Mutually exclusive 
• Exhaustive 
• Unambiguous 
• Repeatable 
• Accepted and useful 
 
Howard has described a broad range of taxonomies and proposed his own comprehensive 
scheme.  In general order of increasing complexity, existing taxonomies of computer and 
network attacks rely on the following methods: 
• Lists of terms 
• Lists of categories 
• Results categories 
• Empirical lists 
• Matrices 
He found each of the above methods to be flawed based on one or more of these criteria.  
His findings are shown in Table B-1.  Please see Howard (1997) for a more complete 
discussion. 
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Table B-1.  Howard’s taxonomic scheme 

Taxonomic method Example (reference) Unmet criteria 
Lists of terms Login spoofing/Induced 

stress failures/Network 
services attacks/Combined 
attacks (Cohen 95:40-54) 

Not mutually exclusive 
Unmanageably long 
Difficult to apply 
No structure 

Lists of categories Stealing passwords 
Social engineering 
… 
 Denial of service 
(Cheswick and Bellovin, 
1994) 

Not mutually exclusive 
Unmanageably long 
Difficult to apply 

Results categories 
(describe result of attack) 

Corruption 
Leakage 
Denial 
(Cohen 95:55) 

Not exclusive 

Empirical lists 
(based on classification of 
empirical data) 

External information theft 
External abuse of resources 
. . .  
(Neumann and Parker, 
1989) 

Not logical or intuitive 

Matrices 
(two dimensional 
classification schemes) 

Security flaw taxonomy: 
Flaws by genesis 
(Landwehr, et al, 1994) 

Not unambiguous 
Not exhaustive 

 

B.2  Operational models 
Stallings (1995) developed a process model of security threats in which he defined 
passive and active attacks: 

 
Table B-2.  Stallings’ model of security threat 

Attack type Category of attack Description 
Passive Interception Unauthorized party gains 

access to an asset 
Interruption Asset is destroyed, becomes 

unavailable or unusable 
Modification Unauthorized party gains 

access to and tampers with 
an asset 

Active 

Fabrication Unauthorized party inserts 
counterfeit objects into the 
system 
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Howard (1997) suggested a process model linking attackers to their objectives through 
tools, access and results.   
 

Figure B-1.  Howard’s model 

  
Attackers       Tools       Access       Results       Objectives 

 
 
 
Attackers include hackers, spies, terrorists, corporate raiders, professional criminals and 
vandals.  Examples of tools include user commands, scripts or programs, autonomous 
agents, toolkits, distributed tools and data taps.  Access is defined as a vulnerability 
leading to unauthorized access or use which processes files or data.  The results of the 
attack can be corruption of information, disclosure of information, theft of service or 
denial-of-service.  The objectives of the attack may be to achieve political or financial 
gain, or to cause damage. 

B.3  Malicious code taxonomies 

B.3.1  Functional descriptions 
The most familiar taxonomic descriptions are for malicious code: 
• Hoax – usually dispersed as a chain letter by email 
• Trojan Horse – a program that neither replicates nor copies itself, but inflicts damage 

or compromises security 
• Virus – A program or code that replicates 
• Worm – A program that makes copies of itself. 
 
An extensive taxonomy has been developed for viruses.15  They can be classified 
according to what they infect. 
• System sector viruses – infect system files 
• File viruses – infect program (.com and .exe) files 
• Macro viruses – infect data files 
• Companion viruses – add files that run first to disk 
• Cluster viruses – Infect through the disk directory 
• Batch file viruses – Infect using text batch files 
• Source code viruses – Add code to program source code 
 
Viruses can also be classified according to how they infect: 
• Polymorphic viruses – change characteristics as they infect 
• Stealth viruses – actively hide from anti-virus or system hardware 
• Fast and slow infectors – infect in a particular way to avoid anti-virus software 
• Sparse viruses – infect infrequently 

                                                 
15 http://www.mcafee.com/anti-virus/virus_glossary.asp#top and 
http://www.cknow.com/vtutor/vtarmored_m.html  
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• Armored viruses – programmed to make disassembly difficult 
• Multipartite viruses – fall into multiple categories 
• Cavity viruses – attempt to maintain a constant size while infecting 
• Tunneling viruses – attempt to “tunnel under” anti-virus software while infecting 
• Camouflage viruses – attempt to appear as a benign program to scanners 
• NTFS ADS viruses – ride on alternate data streams in the NT file system 

B.4  Hierarchical descriptions 
Louw and Duffy (1992) presented a hierarchical depiction of software pests, but this 
scheme is so general that it is severely limited as a taxonomy (Figure B-2). 

Figure B- 2. Louw and Duffy’s hierarchy of software pests 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Software 
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B.5  Outcome descriptions 
SARC includes a threat severity assessment for malicious code.  Metrics include: 
• Wild – extent to which a virus is spreading (range) 
• Damage – potential damage that an infection could inflict 
• Distribution – how quickly a program spreads itself. 
These metrics are combined into an overall severity measure ranging from Category 1 
(minimal) to Category 5 (Very Severe) 
Adleman (1988) constructed a taxonomy of viruses using the dimensions of 
pathogenicity (producing injury) and contagiousness (ability to spread).  He classified  
viruses into four disjoint (independent) and mutually exclusive categories:  
• Benign 
• Epeian (after the builder of the original Trojan horse of the Odyssey) 
• Disseminating 
• Malicious 
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The relative contagiousness and pathogenicity of these agents is shown in Table B-3. 
Table B-3.  Contagiousness and pathogenicity of viruses in Adleman’s model 

 Pathogenicity 
Contagiousness Low High 
Low Benign Epeian 
High Disseminating Malicious 

 
Adleman also postulated paths of infection based upon these categories: 
• programs infected by a benign virus will be benignant with respect to their uninfected 

predecessors; 
• programs infected by an Epeian virus can only be benignant of Trojan horses with 

respect to their uninfected predecessors; i.e., they will not be able to spread 
themselves; 

• programs infected by a disseminating virus can only be benignant of carriers with 
respect to their uninfected predecessors; i.e., they are never pathogenic. 
Adleman did not explore complex attacks composed of multiple agents. 
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APPENDIX C - Epidemiology Examples 

C.1 Introduction 
This Appendix contains details about the calculation of basic reproduction rate, 

generation time, and doubling time for three email viruses (PrettyPark, LoveLetter, and 
Anna), two worms (MTX and Kak), and one macrovirus (Ethan).  Graphs describing their 
spread, obtained from data provided by two virus protection companies, are also given 
for each virus or worm. 

The purpose of these examples is to illustrate the process through which 
epidemiological measurements may be made for malicious code.  The parameters used in 
the calculations are best-guess estimates.   

Each example contains 
• a technical description presented in a two-column format.  The left column of each 

description contains information taken from a published mechanical description 
obtained from an anti-virus company website.  Sections of the technical description 
that are used in the calculations are highlighted. Our annotations describing important 
points in the calculation of the BRR appear in the right column adjacent to this text; 

• a life cycle diagram that calls out the information from the mechanical description 
that applies to transmission; 

• calculation of basic reproduction rate (BRR).  When there are multiple methods of 
transmission (for example, email, mIRC, or in file, a BRR is given for each branch 
individually, and for the total of all branches (the sum of individual branch BRRs); 

• generation time calculated as the sum of delays that occur during transmission 
between executable forms of the virus or, for worms that continue to infect over a 
relatively long period of time, as the lifetime of the infection; 

• doubling time calculated from the formula: Doubling Time = Generation Time / log2 
BRR; 

• graphs of data obtained from two anti-virus companies. 
When information is available for any one virus or worm from the two anti-virus 

companies, stark differences between the data may be apparent.  This is due to the 
differences in the method of data collection used by the companies.  Company 1 filters 
emails at scanning towers, where they are scanned and relayed to recipients.  The data 
from this company resemble true incidence.  The data from Company 2 is obtained when 
customers initiate virus scans.  
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C.2 Pretty Park 

C.2.1 Technical description  
 

The following technical description was published by F-Secure Corporation at 
http://www.europe.f-secure.com/prettyp.shtml. 

NAME: PrettyPark 
ALIAS: Pretty Park, I-Worm.PrettyPark 

ANNOTATIONS 

The 'PrettyPark' also known as 
'Trojan.PSW.CHV' is an Internet worm, a password 
stealing trojan and a backdoor at the same time. It 

was reported to be widespread in Central Europe in 
June 1999. 

 
There was also an outbreak of this worm in 

March 2000.  
 

Several variants of Pretty Park are known. 
All of them have the same functionality, but some are 

packed.  

 

PrettyPark spreads itself via Internet by 
attaching its body to e-mails as 'Pretty Park.Exe' file. 

The file has the icon showing a character or the 
famous cartoon serial called South Park.  

Being executed it installs itself to system 
and then sends e-mail messages with its copy 

attached to addresses listed in Address Book and also 
informs someone (most likely worm author) on 

specific IRC servers about infected system settings 
and passwords. It also can be used as a backdoor 

(remote access tool).  

PrettyPark begins its execution cycle as 
an email attachment 

When the worm is executed in the system 
for the first time, it looks for its copy already active 

in memory. The worm does this by looking for 
application that has "#32770" 

window caption. If there is no such window, 
the worm registers itself as a hidden application (not 

visible in the task list) and runs its installation 
routine.  

 

While installing to system the worm copies 
itself to \Windows\System\ directory as 

FILES32.VXD file and then modifies the Registry to 
be run each time any EXE file starts when Windows 
is active. The worm does this by modifying an EXE 

file startup command key in the 
HKEY_CLASSES_ROOT. The key name is 

exefile\shell\open\command and it is associated with 
the worm file (FILES32.VXD file that was created in 

the Windows system folder). If the FILES32.VXD 
file is deleted and Registry is not corrected, the EXE 

files would not start any more.  
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In case of error during installing the worm 
activates the SSPIPES.SCR screen saver (3D Pipes). 

If this file is missing, the worm tries to activate. 
'Canalisation3D.SCR' screen saver.  

Then the worm opens Internet connection 
and activates 2 its routines. Further on these inits 

socket (Internet) connection and runs its routines that 
are activated regularly: the first one once per 30 

seconds, another one - once per 30 minutes.  
 

The first routine that activates once in 30 
seconds tries to connect to one of IRC chat servers 

(see the list below) and to send a messages to 
someone if he is present on any 
channel of this chat server. This allows 

worm author to monitor infected computers.  
 

The list of IRC servers the worm tries to 
connect to:  

 
                   irc.twiny.net 
                   irc.stealth.net 
                   irc.grolier.net 

                   irc.club-internet.fr 
                   ircnet.irc.aol.com 

                   irc.emn.fr 
                   irc.anet.com 
                   irc.insat.com 

                   irc.ncal.verio.net 
                   irc.cifnet.com 
                   irc.skybel.net 
                   irc.eurecom.fr 

                   irc.easynet.co.uk 

IRC branch is not involved in replication 
and is not included in BRR calculation. 

The worm may be also used as a backdoor 
(remote access tool) by its author. It can send out 

system configuration details, drives list, directories 
info as well as confidential information: Internet 

access passwords and telephone numbers, Remote 
Access Service login names and passwords, ICQ 

numbers, etc. The backdoor is also able to 
create/remove directories, send/receive files, delete 

and execute them, etc.  

 

The second routine, which is activated once 
per 30 minutes, opens Address Book file, reads e-
mail addresses from there, and sends messages to 

these addresses. The message Subject field contains 
the text:  

 
                   C:\CoolProgs\Pretty Park.exe 

 
The message has an attached copy of the 

worm as Pretty Park.EXE file. If someone receives 
this message and runs the attached file his system 

becomes infected. 

User must click on email attachment to 
execute. 
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C.2.2 Life cycle 
 

The life cycle for PrettyPark is shown in Figure C-1. 
  
 

C.2.3 Basic reproduction rate (BRR) 
 

The parameters used in calculation of the BRR for PrettyPark are shown in Figure C-2. 
The default parameter for the probability that the email attachment will be read has been 
modified because the worm sends multiple copies to each email address, which is 
suspicious.  The estimated BRR for Pretty Park [j * h * i]  is 0.7 * 70 * .05 = 2.45 

 
Parameter description: 
h=mean number of addresses in address book 
i=P(attachment will be opened); lower than default because topic uninteresting and 

multiple copies are suspicious 
j=P(use Outlook and Windows) 
 
 

Figure C-1. Life cycle of PrettyPark 

Pretty Park is received as an email attachment.
Upon execution, it installs itself to Windows system
directory
Opens internet connection(not in BRR)
Opens address book.  Reads email addresses and
sends itself to all addresses every 30 minutes.
Every 30 secs, tries to connect to specific IRC chat
servers.*

executing

connects to IRC* backdoor*

in Windows
directory

in email

executing  
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Figure C-2.  Basic reproduction rate parameters for Pretty Park 

 

NOTE: Sending every 30 minutes does not impact BRR because it is sending to the same 
addresses; it does cause collateral damage as a DOS attack 

C.2.4 Generation time 
 

The generation time for Pretty Park is estimated to be six hours and is due to one 
delay shown in Figure C-3.   

 
Figure C-3. Generation time diagram for PrettyPark  
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C.2.5 Doubling time 
Estimated doubling time for Pretty Park is generation time/ log2 BRR = 4.6 hours 

C.2.6 Anti-virus data 
Data illustrating the number or infections recorded by Anti-Virus Company 2 

from 01 September 2001 to 20 March 2001 are given in Figure C-4.  As discussed in 

Section 2, these data do not show clear trends. 

Figure C-4. Number of infections per hour for PrettyPark reported by Anti-Virus Company 
2 (expressed as number of infected files (top) and number of infected machines (bottom)) 
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C.3 LoveLetter 
 

C.3.1 Technical description 
 
The following technical description was published by F-Secure Corporation at 

http://www.europe.f-secure.com/v-dscs/love.shtml. 
 

 
NAME: LoveLetter 
ALIAS: Lovebug, I-Worm.LoveLetter, 
ILOVEYOU 
 
 
VBS/LoveLetter is a VBScript worm. It 
spreads through e-mail as a chain letter.  
 
You can protect yourself against VBScript 
worms by uninstalling the Windows Script 
Host. For further information, please look 
at http://www.F-Secure.com/virus-info/u-
vbs/  
 
VARIANT: LoveLetter.A 
 
The worm uses the Outlook e-mail 
application to spread. LoveLetter is also an 
overwriting VBS virus and it spreads using 
a mIRC client as well.  
 
When it is executed, it first copies itself to 
the Windows System directory as:  
                    - MSKernel32.vbs 
                    - LOVE-LETTER-FOR-
YOU.TXT.vbs 
and to the Windows directory as:  
        - Win32DLL.vbs 
 
Then it adds itself to the registry, so that it 
will be executed when the system is 
restarted. It adds the following registry 
keys:  
 
 
                    

ANNOTATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are three transmission paths to 
include in the BRR calculation. 
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HKEY_LOCAL_MACHINE\Software\Mi
crosoft\Windows\CurrentVersion\Run\MS
Kernel32 
                 
HKEY_LOCAL_MACHINE\Software\Mi
crosoft\Windows\CurrentVersion\RunServi
ces\Win32DLL 
 
After that the worm replaces the Internet 
Explorer home page with a link that points 
to an executable program, "WIN-
BUGSFIX.exe". If the file is downloaded, 
the worm adds this to the registry as well, 
which causes the program to be executed 
when the system is restarted.  
 
The executable part the LoveLetter worm 
downloads from the web is a password 
stealing trojan. On then system startup the 
trojan tries to find a hidden window named 
'BAROK...'. If it is present, the trojan exits 
immediately, in other case the main routine 
takes control. The trojan checks for the 
WinFAT32 subkey in the following 
Registry key:  
 
HKEY_LOCAL_MACHINE\Software\Mi
crosoft\Windows\CurrentVersion\Run 
 
If the WinFAT32 subkey key is not found, 
the trojan creates it, copies itself to the 
\Windows\System\ directory as 
WINFAT32.EXE and then it runs the file 
from that location. The above registry key 
modification causes the trojan to become 
active every time Windows starts.  
 
Then the trojan sets the Internet Explorer 
startup page to 'about:blank'. After that the 
trojan tries to find and delete the following 
keys:  
 
Software\Microsoft\Windows\CurrentVersi
on\Policies\Network\HideSharePwds 
 
Software\Microsoft\Windows\CurrentVersi

 
 
 
 
 
 
Reboot is required. 
 
 
 
Not included in BRR calculation because 
does not pertain to replication. 
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on\Policies\Network\DisablePwdCaching 
 
.DEFAULT\Software\Microsoft\Windows\
CurrentVersion\Policies\Network\HideShar
ePwds 
                 
.DEFAULT\Software\Microsoft\Windows\
CurrentVersion\Policies\Network\DisableP
wdCaching 
 
Then the trojan registers a new window 
class and creates a hidden window titled 
'BAROK...' and remains resident in the 
Windows memory as a hidden application.  
 
Immediately after startup and when timer 
counters reach certain values, the trojan 
loads the MPR.DLL library, calls the 
WNetEnumCashedPasswords function and 
sends stolen RAS passwords and all cached 
Windows passwords to e-mail address 
'mailme@super.net.ph' that most likely 
belongs to the trojan's author. The trojan 
uses mail server 'smtp.super.net.ph' to send 
e-mails. The e-mail's subject is 'Barok... 
email.passwords.sender.trojan'.  
 
There is the author's copyright message 
inside the trojan's body:  
 
 
barok ...i hate go to school suck -
>by:spyder @Copyright (c) 2000 
GRAMMERSoft Group >Manila,Phils. 
 
There are also some encrypted text 
messages in the trojan's body for its own 
use.  
 
After that the worm creates an HTML file 
called "LOVE-LETTER-FOR-YOU.HTM" 
to the Windows System directory. This file 
contains the worm and it will be sent using 
mIRC whenever another person joins an 
IRC channel where the infected user 
currently is. To accomplish this the worm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mIRC transmission path. 
 
 
 
 
 
Emails itself to all addresses in Outlook 
address book. 
 
 
 
 
 
 
 
 
Only one message sent to each email 
address. 
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replaces the "script.ini" file from the mIRC 
installation directory.   
 
Then the worm uses Outlook to mass mail 
itself to everyone in each address book. 
The message that it sends looks like this:  
 
                    Subject:    ILOVEYOU 
                    Body:       kindly check the 
attached LOVELETTER coming from me. 
                    Attachment: LOVE-LETTER-
FOR-YOU.TXT.vbs 
 
LoveLetter sends the mail once to each 
recipient. After a mail has been sent, it adds 
a marker to the registry and does not mass 
mail itself anymore.  
 
Then the virus searches for certain file 
types from all folders in all local and 
remote drives and overwrites them with its 
own code. The files that are overwritten 
have either a "vbs" or a "vbe" extension.  
 
The virus creates a new file with the same 
name for files with the following 
extensions: ".js", ".jse", ".css", ".wsh", 
".sct" and ".hta". The only difference is that 
the extension of the new file is ".vbs". The 
original file will be deleted.  
 
After this has been done, the the virus 
locates files with ".jpg" and ".jpeg" 
extensions, adds a new file next to it and 
deletes the original file. Then the virus 
locates ".mp3" and ".mp2" files, creates a 
new file and hides the original file. In both 
cases the new files created will have the 
original name with the additional extension 
".vbs". For example, a picture named 
"pic.jpg" will cause a new file called 
"pic.jpg.vbs" to be created. 

 
 
 
Overwrites files with specific extensions. 

  
 
 
C.4 Life cycle 
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The life cycle of LoveLetter is shown in Figure C-5. 

 

C.4.1 Basic reproduction rate (BRR) 
The parameters used in the calculation of the BRR for LoveLetter are shown in 

Figure C-6.  LoveLetter was very successful because it contained an attractive message 
from a trusted source.  To reflect this, we have increased the probability that an email 
attachment will be executed to 0.2. 

Figure C-6. Basic reproduction rate parameters for LoveLetter 
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Figure C-5. Life cycle of LoveLetter (LB) 
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Life cycle begins when LB is
executed.  This initiates three
transmission paths:
•  file:  LB overwrites many files,

some of which may be
transferred to other hosts and
executed.

•  IRC:  LB alters mIRC
configuration files so that LB is
broadcast to other IRC clients

•  email: LB transmits itself to all
email addresses in host’s
Outlook address book



 

173 

 
Parameter description: 
a=mean number of files overwritten 
c=P(file being transferred to another machine) 
d=P(recipient does not delete file on arrival) 
e=P(recipient runs file given it was not deleted) 
f=P(mIRC is used on a machine) 
g=mean number of IRC users on a channel at a given time 
h=mean number of addresses in address book 
i=P(attachment will be opened) 
j=P(use Outlook and Windows) 
 

The estimated BRR for LoveLetter is given for each of the three paths in the 
analytical model.  The total BRR is the sum of these components. 
 
BRR total  = BRR (in file) + BRR (IRC) + BRR (email) 
 
         = acde + fgde + hi 
 
         = 5.04  + 0.34 + 9.8 = 15.18 
 

C.4.2  Generation time 
The estimated generation time for LoveLetter is illustrated in Figure C-7. We 

calculate the generation time for each transmission branch independently: 
 
Generation time (in file) = one month + six hours 
Generation time (IRC) = eight days + six hours 
Generation time (email) = twelve hours 
 

Examining the BRR in conjunction with generation time gives an indication of the 
relative contributions of each transmission path to infectious spread. BRR (email) is high 
and generation time is short.  This branch is responsible for the initial epidemic spike.  
BRR (in file) is high, but the generation time is very long.  The infection is slow to spread 
to this transmission path.  This path may contribute to the persistence of the infection in 
the population after the initial epidemic rise has subsided.  BRR (IRC) is slight and the 
generation time is relatively long when compared to the generation time for BRR (email).  
This transmission path contributes little to infectious spread in this model. 
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C.4.3 Doubling time 
 

The estimated doubling time for the email form of LoveLetter is 3.6 hours.  
Published reports estimated the total number of opened attachments at 1.9 million in one 
day.  Using the calculations in our model, a total of 1.9 million infections would be 
achieved along the email transmission branch between 7 and 8 generations (25.2 – 28.8 
hours).  
 

C.4.4 Anti-virus data 
 

We were not able to obtain real-world data that captured the initial epidemic 
spread of the LoveLetter worm.  The data in Figure C-8 show the subsequent level of 
persistence in the population.  The release date for LoveLetter was 04 May 2000. 

Figure C-7. Generation time diagram for LoveLetter 
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Figure C-8. Number of infections per day for LoveLetter Reported by Anti-Virus Company 2 
(expressed as number of infected files (top) and number of infected machines (bottom)) 

Time Series for LoveLetter (day)

0

50000

100000

150000

200000

250000

300000

9/1/00 10/21/00 12/10/00 1/29/01 3/20/01

Time

In
fe

ct
ed

 F
ile

s

Infected_Files

Ten-day Moving Avg.

 
 
 

Time Series for LoveLetter (day)

0
20
40
60
80

100
120
140
160

9/1/00 10/21/00 12/10/00 1/29/01 3/20/01

Time

In
fe

ct
ed

 C
om

pu
te

rs

Infected_Computers

Ten-day Moving Avg.

 



 

176 

 

C.5 Anna 
 

C.5.1 Technical description  
The following technical description was published by Greenapple.com at 

http://greenapple.com/support/security/pc-sentry/sst.htm 
name: VBS.SST@mm 
aka: AnnKournikova.jpg, On The Fly, 
Kalamar 
type: Worm 
host platform: Windows 
first incidence: None yet 
last incidence: None yet 
level of incidence: Low 
damage capacity: Low 
links: McAfee, Norton 
look for: E-mail with attachments claiming 
to contain pictures of the tennis player 
Anna Kournikova. The file attached is the 
virus. Keep an eye out for subjects such as 
"Here you are ;-)," "Here you have ;o)" and 
"Here you go ;-)."  
 
A recently discovered virus that spreads 
like the "ILOVEYOU" virus of the past, 
VBS.SST uses an email with an attachment 
claiming to be an image of the tennis player 
Anna Kournikova. This is no picture, but a 
Visual Basic script file which, when 
opened, infects the machine. As part of 
infections, the virus will mail itself out to 
others in the address book of the user. 
 
The following symptoms indicate a 
probable infection by the virus: 
: Existence of the file 
"c:\WINDOWS\AnnaKournikova.jpg.vbs"  
: Existence of the registry key 
HKEY_USERS\.DEFAULT\Software\OnT
heFly  
 
To remove the virus download the latest 
engine and 'dat' files for your virus 
detection software and run a virus scan. 

ANNOTATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Spreads via an email attachment. 
 
 
 
 
Automatically emails itself to addresses in 
address book. 
 
 
 
 
 
 
 
 
There is no mention of a need to reboot. 
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Machines that have Microsoft's 
"Scriptlet.eyedog" patch installed (a patch 
which helps contain renegade VBS scripts) 
should be ok. Windows 95, 98, Me and 
2000 
machines that do not have Windows 
Scripting installed will be safe. Most 
machine, however, do have Scripting 
installed and users should download the 
latest engine 
and 'dat' files for their virus software. 
  
 

C.5.2 Life cycle 
The conceptualized life cycle for Anna is shown in Figure C-9. 

 

 

C.5.3 Basic reproduction rate (BRR) 
 

The parameters used in estimating the BRR of Anna are shown in Figure C-10. 

Figure C-9. Life cycle of Anna 

Anna is spread as an email attachment.
The recipient must click on the
attachment to execute the file
The virus copies itself to the Windows
directory.
It emails itself to all addresses in the
address book.
On 01/26, it tries to connect to
dynabyte website (not pertinent to
BRR)

executing

in email

executing
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Figure C-10.  Basic reproduction rate parameters for Anna 
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executing 

j=0.7 

h=70 

i=0.1 

 
 

Parameter description: 
h=mean number of addresses in address book 
i=P(attachment will be opened) 
j=P(use Outlook and Windows) 
 
 

The estimated BRR for Anna is 0.7 * 70*0.1 = 4.9 
 

C.5.4 Generation time 
The estimated generation time for Anna is 6 hours as illustrated in Figure C-11. 

 

 

Figure C-11. Generation time diagram for Anna 
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C.5.5 Doubling time 
The estimated doubling time for Anna is 2.6 hours.  One million infections would 

be achieved between 8 and 9 generations (20.9 – 23.4 hours). 
 

C.5.6 Anti-virus data 
 

The data in Figure C-12 capture the initial epidemic rise and endemic tail for 
Anna.  The graph shows that Anna peaked less than 24 hours after release and that the 
peak was very brief. 
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Figure C-12. Number of infections per hour for Anna reported by Anti-Virus Company 2 
(expressed as number of infected files (top) and number of infected machines (bottom)) 
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C.6 Kak 
 

C.6.1 Technical description 
The following technical description was published by F-Secure Corporation at 

http://www.europe.f-secure.com/v-descs/kak.htm. 
 

NAME: Kak 
ALIAS: Wscript.KakWorm, KakWorm 
 
Kak is a worm that - like BubbleBoy - 
embeds itself without any attachment to 
every e-mail sent from the infected system. 
For further information about BubbleBoy, 
see the description: http://www.F-
Secure.com/v-descs/bubb-boy.shtml  
 
Kak is written in JavaScript and it works 
on both English and French versions of 
Windows 95/98 if Outlook Express 5.0 is 
installed. It does not work in a typical 
Windows NT installation.  
 
The worm uses a known security 
vulnerability that is in Outlook Express. 
Once the user receives an infected e-mail 
message and opens or views the message in 
the preview pane, the worm creates a file 
"kak.hta" to the Windows Startup 
directory.  
 
Next time the system is restarted, the worm 
activates. It replaces "c:\autoexec.bat" with 
a batch file that deletes the worm from the 
Startup directory. The original 
"autoexec.bat" is copied to "C:\AE.KAK".  
 
Also, It modifies the message signature 
settings of Outlook Express 5.0 by 
replacing the current signature with an 
infected file, "C:\Windows\kak.htm".  
 
Therefore every message sent with Outlook 
Express will contain the worm after this 
has been done.  
 

ANNOTATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Email must be read or previewed in 
Outlook Express to infect.  Execution of an 
email attachment is not required. 
Reboot is required. 
 
 
 
 
 
 
 
 
 
 
The worm is attached to all legitimate 
emails sent after infection. 
 
Runs continuously until disinfection. 
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Then it modifies the Windows registry in 
such a way that it will be executed in every 
system startup. The key it adds to the 
registry is:  
 
HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Windows\CurrentVersion\Run\c 
g0u 
 
The .hta file that the virus creates and 
executes in the future is saved to Windows 
System directory. On the first day of each 
month, if the number of hours is more than 
17  (i.e. 6pm or later), the worm will show 
an alert box with the following text:  
 
                      Kagou-Anit-Kro$oft say not 
today! 
Then the worm shuts down Windows. 

 
 
Payload is not included in BRR calculation. 
 

 

C.6.2 Life cycle 
The conceptualized life cycle for Kak is shown in Figure C-13 

 

 

Figure C-13. Life cycle of Kak 
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in startup 
directory 

in email 

in signature file

Kak is received in an infected email 
message. 
 
It places itself in the startup 
directory. 
 
When the system is restarted, it 
modifies the signature file so that 
every message sent with Outlook 
Express will contain the worm 



 

183 

C.6.3 Basic reproduction rate (BRR) 
Because Kak spreads automatically and attaches itself through legitimate emails, 

it may evade detection for relatively long periods of time.  This increases the number of 
cases that one infected case can produce.  We assume that the email will send one email 
every eight hours for one week before detection on average.  Email must be opened or 
previewed in OutLook (probability = 0.6). The parameters used to calculate the BRR for 
Kak are shown in Figure C-14. The estimated BRR for Kak is 0.7 *5 *.6 * 21 = 44.1. 
 
Parameter descriptions: 
d=P(recipient does not delete file on arrival) 
j=P(use Outlook and Windows) 
k=mean number of recipients per legitimate email 
l=mean number of legitimate email messages 
 
 

Figure C-14. Basic reproduction rate parameters for Kak 
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k * d = 
5 * .6 = 

3 

l = 21 

j=0.7 

 
 
 
 

C.6.4 Generation time 
 
There are two delays in the life cycle that result in an estimated generation time of 

12 hours.  These are shown in Figure C-15. 



 

184 

 

 
 
 
 
 
 

C.6.5 Doubling time 
 

The estimated doubling time for Kak is 2.2 hours.  This estimate disagrees with 
real world data which shows very slow growth.  This may be due to several reasons.  Kak 
was released in October, 199916.  Public awareness was heightened by a media report of a 
large scale release in May, 2000, when a mass mailing by online computer retailer 
Shoppingplanet.com sent the infection to 50,000 customers.  Effective controls may have 
depressed the epidemic potential of this worm.  Kak may be an example of effective 
defense against a very precocious worm. 
 
 
 
 

C.6.6 Anti-virus data 
 

                                                 
16 http://vil.nai.com/vil/virusSummary.asl?virus_k10509 

Figure C-15 Generation time diagram for Kak 
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The real world data from Anti-Virus Company 2 given in Figure C-16 for Kak 
reflect its persistent endemic occurrence in the population.  These data show it continues 
to spread a year after initial release, but slowly. Prominent features such as the elevated 
report rate in February 2001, are probably not indicative of the worm’s intrinsic behavior. 

 
 

Figure C-16. Number of infections per day for Kak reported by Anti-Virus Company 2 
(expressed as number of infected files (top) and number of infected machines (bottom)) 
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C.7 MTX 
 

C.7.1 Technical description 
The following technical description was published by F-Secure Corporation at 

http://www.europe.f-secure.com/v-descs/mtx.htm. 
NAME: MTX 
ALIAS: IWorm_MTX, I-Worm.MTX, 
Matrix 
ALIAS: Apology, W32/Apology 
 
The MTX worm has three components - 
worm, virus and backdoor. It spreads under 
Win32 systems - the virus component 
infects Win32 executable files, attempts to 
send e-mail messages with infected 
attachments and installs the backdoor 
component to download and spawn 
"plugins" on an affected system.  
 
The virus has an unusual structure. It 
consists of three different components that 
are run as standalone programs (Virus, 
email Worm and Backdoor). The virus is 
the main component, it keeps the worm and 
the backdoor programs in its code in 
compressed form. While infecting the 
system, it extracts and spawns them:  
 
The MTX worm-virus structure looks like 
this:  
 
                   ------------------ 
                   I The virus      I --> installs 
Worm and Backdoor to the system, 
                   I installation   I     then finds 
and infects Win32 executable files 
                   I and infection  I 
                   I routines       I 
                   ------------------ 
                   I Worm code      I --> is 
extracted to file and run as stand-alone 
program 
                   I (compressed)   I 

ANNOTATIONS 
 
 
 
Two transmission paths: worm and virus.  
Backdoor is not included in BRR 
calculation. 
 
 
 
 
 
 
 
 
 
Installation of virus is a prerequisite to 
infection by worm and backdoor. 
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                   ------------------ 
                   I Backdoor code  I --> is 
extracted to file and run as stand-alone 
program 
                   I (compressed)   I 
                   ------------------ 
 
The worm code does not contain all the 
necessary routines to infect the system 
where the infected e-mail (see below) is 
sent as an attachment. The worm file is 
infected by the virus as an ordinary file and 
then sent. The reason to use such a way is 
not clear. Probably the components were 
written by different people.  
 
The Virus component contains the 
following text strings:  
 
SABIÁ.b ViRuS 
Software provide by [MATRiX] VX 
TeAm: Ultras, Mort, Nbk, LOrd DArk, 
Del_Armg0, Anaktos 
: All VX guy in #virus and Vecna for help 
us 
Visit us at: http://www.coderz.net/matrix 
 
The worm component contains the 
following text strings:  
 
Software provide by [MATRiX] VX team: 
Ultras, Mort, Nbk, LOrd DArk, 
Del_Armg0, Anaktos Greetz: 
All VX guy on #virus channel and Vecna 
Visit us: www.coderz.net/matrix 
 
The Backdoor contains the following text 
strings:  
 
Software provide by [MATRiX] team: 
Ultras, Mort, Nbk, LOrd DArk, 
Del_Armg0, Anaktos 
Greetz:Vecna 4 source codes and ideas 
 
Virus Component  
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The virus component uses EPO (Entry 
Point Obscuring) technology while 
infecting a file. This means that the virus 
does not affect the file at its entry code, but 
places "Jump-to-Virus" instruction 
somewhere in the middle of the file code 
section to make the detection and 
disinfection procedures more complex. As 
a result the virus is activated only if the 
corresponding affected program's branch 
receives control.  
 
The virus is also encrypted, so first of all it 
decrypts itself when its code gets control. 
The virus then looks for necessary Win32 
API functions by scanning Win32 Kernel. 
The virus tries Win9x, WinNT and 
Win2000 addresses to do this.  
 
The virus then looks for anti-virus 
programs active in the system and exits if 
any of them is detected. The list of anti-
virus programs the virus looks for is as 
follows:  
 
                   AntiViral Toolkit Pro 
                   AVP Monitor 
                   Vsstat 
                   Webscanx 
                   Avconsol 
                   McAfee VirusScan 
                   Vshwin32 
                   Central do McAfee VirusScan 
 
Then the virus installs its components to 
the system. They are decompressed 
installed to the Windows directory and then 
spawned. Three files created in there with 
the hidden attribute set. Their names are:  
 
IE_PACK.EXE   - pure Worm code 
WIN32.DLL     - Worm code infected by 
the virus 
MTX_.EXE      - Backdoor code 
 
The virus then infects Win32 executable 

 
 
 
 
 
 
 
Virus will not install if anti-virus software 
is present. 
 
 
 
 
 
 
 
 
 
 
 
 
Virus installs to Windows directory. 
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PE EXE files in current, temporary, and 
Windows directories, and then exits.  
 
Worm Component  
 
The worm component uses technology that 
was first introduced by Happy99/Ska 
Internet worm to send infected messages. 
The worm affects WSOCK32.DLL file in 
the Windows system directory by 
appending a component of its code to the 
end of the file and hooking the "send" 
WSOCK32.DLL routine. As a result, the 
worm monitors all data that is send from an 
affected computer to the Internet.  
 
Usually WSOCK32.DLL file is in use at 
the moment the worm starts and it is locked 
by Windows. To avoid that, the worm uses 
the standard way: it creates a copy of the 
original WSOCK32.DLL with the name 
WSOCK32.MTX, infects that copy and 
then writes "replace original file with 
infected" instructions to the WININIT.INI 
file:  
                   
NUL=C:\WINDOWS\SYSTEM\WSOCK3
2.DLL 
                   
C:\WINDOWS\SYSTEM\WSOCK32.DLL
=D:\WINDOWS\SYSTEM\WSOCK32.M
TX 
 
where "C:\WINDOWS\SYSTEM" is the 
name of the Windows system directory and 
may differ depending on the name of the 
directory where Windows is installed.  
 
The infected WSOCK32 replaces the 
original one during the next reboot, and the 
worm gets access to data that is sent from 
the infected machine. The worm pays 
attention to the Internet sites (Web, ftp) that 
are visited, as well as to e-mail messages 
that are sent from the computer.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reboot required. 
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The most visible behaviour of the virus is 
that it stops visiting several Internet sites 
and disables sending messages to the same 
domains (they are anti-virus domain 
names). The virus detects them by four-
letter combinations:  
 
                   nii. 
                   nai. 
                   avp. 
                   f-se 
                   mapl 
                   pand 
                   soph 
                   ndmi 
                   afee 
                   yenn 
                   lywa 
                   tbav 
                   yman 
 
Furthermore, the worm does not allow user 
to send e-mail messages to the following 
domains:  
 
                   wildlist.o* 
                   il.esafe.c* 
                   perfectsup* 
                   complex.is* 
                   HiServ.com* 
                   hiserv.com* 
                   metro.ch* 
                   beyond.com* 
                   mcafee.com* 
                   pandasoftw* 
                   earthlink.* 
                   inexar.com* 
                   comkom.co.* 
                   meditrade.* 
                   mabex.com * 
                   cellco.com* 
                   symantec.c* 
                   successful* 
                   inforamp.n* 
                   newell.com* 
                   singnet.co* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two emails sent to all recipients of 
legitimate emails sent from infected 
computer. 
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                   bmcd.com.a* 
                   bca.com.nz* 
                   trendmicro* 
                   sophos.com* 
                   maple.com.* 
                   netsales.n* 
                   f-secure.c* 
 
The worm also intercepts e-mail messages 
that are sent and attempts to send a 
duplicate message with the infected 
attachment to the same address (the same 
as "Happy99/Ska" worm does). As a result, 
victim address should receive two 
messages: first is the original message 
written by the sender, second is a message 
with empty subject and text and attached 
file that has one of the names that are 
selected by worm depending on current 
date:  
 
                   README.TXT.pif 
                   I_wanna_see_YOU.TXT.pif 
                   MATRiX_Screen_Saver.SCR 
                   
LOVE_LETTER_FOR_YOU.TXT.pif 
                   
NEW_playboy_Screen_saver.SCR 
                   BILL_GATES_PIECE.JPG.pif 
                   TIAZINHA.JPG.pif 
                   FEITICEIRA_NUA.JPG.pif 
                   Geocities_Free_sites.TXT.pif 
                   NEW_NAPSTER_site.TXT.pif 
                   METALLICA_SONG.MP3.pif 
                   ANTI_CIH.EXE 
                   
INTERNET_SECURITY_FORUM.DOC.p
if 
                   ALANIS_Screen_Saver.SCR 
                   
READER_DIGEST_LETTER.TXT.pif 
                   WIN_$100_NOW.DOC.pif 
                   
IS_LINUX_GOOD_ENOUGH!.TXT.pif 
                   QI_TEST.EXE 
                   AVP_Updates.EXE 
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                   SEICHO-NO-IE.EXE 
                   YOU_are_FAT!.TXT.pif 
                   FREE_xxx_sites.TXT.pif 
                   I_am_sorry.DOC.pif 
                   Me_nude.AVI.pif 
                   
Sorry_about_yesterday.DOC.pif 
                   Protect_your_credit.HTML.pif 
                   JIMI_HMNDRIX.MP3.pif 
                   HANSON.SCR 
 XXXX_WITH_DOGS.SCR 
                   MATRiX_2_is_OUT.SCR 
                   zipped_files.EXE 
                   BLINK_182.MP3.pif 
 
The worm sends out the WIN32.DLL file 
that was dropped by the virus component 
during MTX's first installation to the 
infected system.  
 
Note: the worm does not drop WIN32.DLL 
file, but uses that file to attach it to 
messages that are sent. So the "pure worm" 
is not able to spread more than once: when 
run on victim machine it will infect 
WSOCK32.DLL, but will not able to send 
its copies further. To "fix that problem" the 
worm sends its infected copy (WIN32.DLL 
is the worm component infected by the 
virus component, see above).  
 
Fortunately, the known worm modification 
has a bug in its spreading routine and the e-
mail server fails to receive affected 
messages from the infected machine. So, 
the known worm version cannot be widely 
spread.  
 
Backdoor Component  
 
Being run, the backdoor component creates 
a new key in system registry that indicates 
that the machine is already infected:  
 
                   HKLM\Software\[MATRIX] 
 

 
 
 
 
 
 
 
Backdoor not included in BRR 
calculations. 
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If this key exists, the Backdoor skips the 
installation procedure. Otherwise it 
registers itself in auto-run section:  
 
                   
HKLM\Software\Microsoft\Windows\Curr
entVersion\Run 
                    
SystemBackup=%WinDir%\MTX_.EXE 
 
where %WinDir% is Windows directory.  
 
The backdoor then stays active in Windows 
as a hidden application (service) and runs a 
routine that connects to some Internet 
server, gets files from there and spawns 
them to the system. So the Backdoor can 
infect the system with other viruses or 
install trojan programs or more functional 
backdoors.  
 
The backdoor in the known virus version 
has a bug that causes a standard error 
message when the backdoor tries to access 
the Internet site.  

 
  

 

C.7.2 Life cycle 
 

The conceptualized life cycle for MTX is shown in Figure C-17. 
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C.7.3 Basic reproduction rate (BRR) 
In calculating an estimate of BRR for MTX, we make the following modifications to 

the default parameters: 
• P(attachment will be opened) is reduced to 0.07, reflecting the increased likelihood of 

detection that results when the worm sends two emails, one infected and one not, to 
every legitimate recipient of email. 

• P(anti-virus software is present) has been added.  The virus will not install the worm 
in this case. 
These parameters are shown in Figure C-18. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-17. Life cycle of MTX 
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Figure C-18. Basic reproduction rate parameters for MTX 
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Parameter description: 
c=P(file being transferred to another machine) 
i=P(attachment will be opened) 
j=P(use Outlook and Windows) 
k=mean number of recipients per legitimate email 
l=mean number of legitimate email messages 
m=P(virus does not exit due to finding anti-virus software) 
r=P(sent file is infected) 
 
 

The estimated BRR for MTX = BRR (email) + BRR (in file) 
  = k*l*I*m + cr 
  = 1.225 + .007 
  = 1.232  
 
 

C.7.4 Generation time 
Estimated generation times for the two transmission paths are 12 hours for email 

and 2 months for in file (Figure C-19). 
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C.7.5 Doubling time 
The estimated doubling time for MTX is 41 hours.  This is approximately half the 

doubling time of seven to eight days shown in the data obtained from Anti-Virus 
Company 1.  This doubling time is based on a BRR of 1.24, which is very close to the 
BRR or 1.0 indicating control. 
 

C.7.6 Anti-virus data 
In the graph shown in Figure C-20, MTX was first discovered on 17 August 2000 

(Symantec).   
The time period shown includes the initial growth curve.   

This graph illustrates a number of interesting features: 
• A characteristic sigmoid curve, characteristic of logistic growth.  The initial portion 

of the curve is approximately exponential and shows a doubling time of 7 or 8 days.   
• After the initial increase, Company 1’s curve remains high, although it is very noisy 

and probably decreasing slowly. 
• Company 1’s data show a very clear weekly cycle, which usually peaks on Tuesdays. 
• A seasonal decrease around Christmas is also clear. 
• Company 2’s data track Company 1’s data through the exponential portion of the 

curve.  The remainder of the curve is relatively uninformative, and is not well 
correlated with Company 1’s data. 

Figure C-19. Generation time diagram for MTX 
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Figure C-20. Number of infections per day for MTX reported by Anti-Virus Companies 1 
and 2 
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C.8 Ethan 
 

C.8.1 Technical description 
The following technical description was published by McAfee at 

http://www.vil.nai.com/vil/virusSummary.asp?virus_k=10107. 
W97M/Ethan.A is a Word97 Macro Virus. 
It is a fast moving infector and reported to 
numerous AVERT Labs around the globe. 
Infection takes place when an infected 
Word document is closed, allowing the 
virus to propagate itself to normal.dot 
template.  
 
W97M/Ethan.A is a parasitic class module 
infector, which consists of one macro, and 
is approximately 50 lines of code in length. 
It infects documents and templates using an 
algorithm to input data, from a 
source file 
 
c:\ethan.___ 
 
to the host document. This source file is 
exported VBA code of the virus. 
 
Viruses using class module infection 
method transfer the virus code to the 
"ThisDocument" container. This virus 
prepends its code and infects all documents 
accessed. 
 
There is a 3-in-10 chance that this virus 
will modify the document properties of 
infected files: 
 
Title = "Ethan Frome" 
Author = "EW/LN/CB" 
 
Ethan has one additional characteristic in 
that if it detects the "class.sys" file (created 
by the W97M/Class virus infection) on the 
machine it will delete it.  
 

ANNOTATIONS 
 
The macrovirus infects a MS Word 
template. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This probability is not included in the BRR 
calculation because it does not pertain to 
replication. 
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C.8.2 Life cycle 
The conceptualized life cycle for Ethan is shown in Figure C-21.  We assume that 

the virus will be transferred to a new host through an infected document attached to 
email. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C.8.3 Basic reproduction rate (BRR) 
Like Kak, the infectious spread of this macrovirus continues until it is detected.  

We assume that the virus will escape detection for two months.  The estimated BRRs for 
the two transmission paths, BRR (same machine) and BRR (new machine) are 17.5 and 
5.7 respectively, resulting in a BRR (total) of 23.2.  These parameters are illustrated in 
Figure C-22. 
 
 

Figure C-21. Life cycle of Ethan 
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Figure C-22. Basic reproduction rate parameters for Ethan 
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Parameter description: 
d=P(recipient does not delete file on arrival) 
j=P(use Outlook and Windows) 
l=mean number of legitimate email messages 
n=number of uninfected documents on a host 
q=P(email contains MS Word attachment) 
r=P(sent file is infected) 
 

C.8.4 Generation time 
Estimated generation time for Ethan is shown in Figure C-23.  Generation time 

for the same-host branch is 6 hours; for the new-host branch, 72 hours. 
 

Figure C-23. Generation time diagram for Ethan 
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C.8.5 Doubling time 
The estimated generation times for the two transmission paths are: 

Doubling time (same host) = 1.5 hours; 
Doubling time (new host) = 28.8 hours. 
 

These doubling times indicate that while infection on any one machine occurs 
relatively rapidly, infection among machines proceeds at a slower pace. 
 

C.8.6 Anti-virus data 
Data reported regarding the spread of Ethan are shown in Figure C-24.  Several 

regimes are clearly visible, but the transitions appear to be unrelated to the macrovirus’s 

Figure C-24. Number of infections per day for Ethan reported by Anti-Virus 
Company 2 (expressed as number of infected files (top) and number of infected 

machines (bottom)) 
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intrinsic behavior.  The sudden increases in incidence may be due to rare events, such as 
mass mailings of infected files, but we have no evidence to substantiate this hypotheses. 


